THE CANAVERAL SHOALS BLUES: How beach nourishment using the Canaveral Shoals offshore borrow site has impacted the surf breaks of Cape Canaveral and Cocoa Beach, Florida

John M. Hearin, Ph.D., P.E.
Cities of Cape Canaveral and Cocoa Beach
Brevard County, Florida
Brevard County, FL

North Reach – 9.4 miles
(Port Canaveral to Patrick AFB)
Cities of Cape Canaveral and Cocoa Beach
Jetty at Port Canaveral traps sediment and inhibits alongshore sediment flow.

Erosion impacts extend 15 miles south of Port Canaveral and include all of North Reach.
North Reach Beach
Nourishment Methods:

Port Canaveral Harbor

Sand Bypass Project

1972: 200,000 yd3
1995: 783,000 yd3
1998: 1,035,000 yd3
2007: 750,000 yd3
2010: 650,000 yd3

(Brevard County, 2018)
North Reach Beach Nourishment Methods:
Brevard County Shore Protection Project

Port Canaveral

Canaveral Shoals II

2001 – 2,798,000 yd³
2005 – 754,600 yd³

(Brevard County, 2018)
North Reach Beach Nourishment Methods:
Brevard County Shore Protection Project

Canaveral Shoals II

2014 – 972,410 yd³
2018 – 825,616 yd³

(Brevard County, 2018)
North Reach Historical Composite Fill Mean Grain Size

- 1989 R-36 Beach
- 1995 Cape AFS Fill
- 1998 Cape AFS Fill
- 2001 Canaveral Shoals Fill
- 2005 Canaveral Shoals Fill
- 2007 Cape AFS Fill
- 2010 Cape AFS Fill
- 2014 Canaveral Shoals Fill

“The in-place beach fill material along the North Reach and Patrick AFB is slightly coarser than the native berm and significantly coarser than the native (beach) profile”

(Olsen, 2002)
Finer sediment = flatter beach slope

Coarser sediment = steeper beach slope
2014 Beach Sediment Data Analysis

North Reach Historical Composite Beach Profile Mean Grain Size

Morphological Modal Beach State Calculations

North Reach Historical Beach Modal States (R-36)

Analysis of Bathymetric Profiles

Beach Surf Zone Slopes

- May 2012
- May 2014
- May 2015

<table>
<thead>
<tr>
<th>Location</th>
<th>North - Filled</th>
<th>Central - No Fill</th>
<th>South - Filled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Madison Ave</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speard Park</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lori Wilson</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st Street South</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15th Street South</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(FDEP, 2017)
Littoral Environment Observations (Surfing Wave Observations)

- The Littoral Environment Observation Program (LEO) was instituted by the Coastal Engineering Research Center of the USACE in 1968 (Smith & Wagner, 1991)

- Mesa (2006) also confirmed that visual observations were a valid method for obtaining wave data in the surf zone

- Presently no instrumentation exists to accurately measure surfing wave quality

- Daily observations of the waves were conducted in all three zones (north fill, central no fill, south fill) by volunteers with significant experience in analyzing surfing wave parameters
Littoral Environment Observations (Surfing Wave Observations)

Volunteers utilized a modified version of the USACE LEO data sheet to record:

- Tide
- Wind direction / speed
- Wave surface condition
- Wave direction
- Wave breaker height
- Wave breaker type / wave peel angle
- Surf zone width
- Average surfing ride duration
- Overall surfing wave quality
Littoral Environment Observations (Surfing Wave Observations)

• 372 independent observations - post fill

• May to December 2014

• Observations entered into an online database

• Used to draw qualitative comparisons between the filled and non-filled sections of the beach
Wave Breaker Height
No statistically significant difference
Surf Zone Width
≈ 100 feet narrower in filled sections
Average Surfing Ride Duration
5 to 10 seconds shorter in filled sections
Overall Surf Quality
50% lower in filled sections
Research Conclusions

• Canaveral Shoals borrow site is much coarser than the native beach profile sediment in the North Reach

• Coarser fill sediment changed the modal beach state of the filled zones from dissipative to intermediate

• Changes in modal beach state resulted in steeper seabed slopes in the filled zones

• Beach Profile surveys confirmed beach slopes were steeper post fill
Research Conclusions

• Littoral Wave Observations conducted by experienced surfers confirmed negative impacts to surfing wave environment

• Previous research suggests that the adverse impacts from the coarser fill will continue for at least 5 years

• If nourishments from the Canaveral Shoals borrow site continue, the beach modal state will trend more intermediate/reflective and at some point, the beach may not be able to recover to its natural dissipative state
Other Impacts of Canaveral Shoals Fill

• Steeper beach = more dangerous beach

• 130% increase in preventative rescues after fill in 2014

• Reduced sea turtle nesting: 50% less nests in years after fill

• Reduced sea turtle nesting success: 10% more false crawls

(Brevard County Ocean Rescue) (Florida Fish and Wildlife Commission)
Other Impacts of Canaveral Shoals Fill

• Steeper beach = waves collapsing on shore at high tide

• A local Surf School was forced to cancel 248 lessons in 2018 because the waves were un-rideable or unsafe during high tide

• 17% loss in revenue

• School only schedules surf lessons at low tide now
Recommendations

• Improve beach fill compatibility
 o Use fill from beach north of Port Canaveral (Cape Canaveral AFS)

• Install a Fixed Sand Bypass System at Port Canaveral
 o Restore a more natural flow of sediment around Port Canaveral
 o Bypass beach compatible sand
 o Eliminate need for disruptive dredge and fill projects
Total Unit Cost of Dredge and Fill has increased over 50% since 1995
(2018 dollars adjusted for inflation)
Unit Cost of Sand Bypass Stations are significantly lower than Dredge and Fill

<table>
<thead>
<tr>
<th>Sand Bypass System</th>
<th>Years</th>
<th>Total Volume Bypassed (yd3)</th>
<th>Total Cost (construction and maintenance) (USD millions)</th>
<th>Unit Cost adjusted for inflation 2018 (USD / yd3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Lake Worth Inlet, Florida</td>
<td>2015 - 2045 Projected</td>
<td>2,100,100</td>
<td>14.8</td>
<td>7.05</td>
</tr>
<tr>
<td>Tweed River, Australia</td>
<td>1999 – 2015 Actual</td>
<td>10,464,000</td>
<td>90.5</td>
<td>8.65</td>
</tr>
</tbody>
</table>
Sand Bypass Station at Port Canaveral could save more than $74 million over 30 years (45% savings)

<table>
<thead>
<tr>
<th>Beach Nourishment Type</th>
<th>Estimated Total Fill Volume (yd³)</th>
<th>Unit Cost</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dredge and Fill</td>
<td>10,740,000</td>
<td>$15.61</td>
<td>$167,651,400</td>
</tr>
<tr>
<td>Fixed Sand Bypass</td>
<td>10,740,000</td>
<td>$8.65</td>
<td>$92,901,000</td>
</tr>
<tr>
<td>Fixed Sand Bypass Cost Savings</td>
<td></td>
<td></td>
<td>$74,750,400</td>
</tr>
<tr>
<td>Fixed Sand Bypass Percentage Savings</td>
<td></td>
<td></td>
<td>45%</td>
</tr>
</tbody>
</table>