Modeling Potential Circulation Improvements in Old Tampa Bay
Tampa, FL

February 8, 2018

Todd DeMunda, P.E.
Shayne Paynter, Ph.D., P.E., P.G.
Mike Salisbury, P.E.
Project Location

Old Tampa Bay
Tampa, FL
Project Location

Old Tampa Bay
Tampa, FL

[Map showing the project location with an area of interest highlighted]
Background

• Florida Department of Transportation (FDOT) anticipating significant costs with upcoming local construction and associated runoff treatment
• Department of Environmental Protection encouraging alternatives to wet detention ponds for treatment
• Area of concern in Old Tampa Bay north of the Courtney Campbell Causeway (SR60)
• Location of healthy seagrass beds in the 1930s prior to causeway construction
Background

- Phase I of this study determined that a modification of the Causeway (adding a bridge section to increase flow exchange) would likely bring about an ecological response greater than that achieved by additional runoff treatment.
- Phase II involved the development and application of a hydrodynamic model to quantify the changes in circulation and residence time achieved by adding bridge segment.
Methodology

• Field data collection (water levels, currents) during August-September 2015
• Bathymetric survey in area of interest
• Delft3D hydrodynamic model
 – Tidal and wind forcing
 – Coarse and nested regional and local model grids
 – Conservative constituent dispersion
 – Quantify changes in residence time with modification to the Causeway
Model Development

Delft3D-FLOW hydrodynamic model

• Regional domain encompassing Tampa Bay to the Gulf of Mexico
 – Based on NOAA’s Tampa Bay Operational Forecast System model
• Nested domain in area of interest driven by regional model
 – Uniform 10 m spatial resolution
Model Development

Delft3D-FLOW hydrodynamic model

- Spatially-varying tidal forcing at Gulf of Mexico
 - Constituents from Oregon State University Tidal Model Driver (TMD)
- Uniform wind forcing from measured data at NOAA Station 8726607
- Daily precipitation from Tampa International Airport (KTPA)
 - (over model domain only; no stormwater runoff into domain)
- Model run concurrent with field data collection period
Regional Grid
Regional Grid
Nested Grid
Proposed Bridge Location

- 60 m (200 ft) opening
- Flap-gate culverts
Modeled Scenarios

<table>
<thead>
<tr>
<th>Name</th>
<th>Proposed Opening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing conditions</td>
<td>None (no change)</td>
</tr>
<tr>
<td>Alternative 1</td>
<td>60 m (200 ft) width</td>
</tr>
<tr>
<td></td>
<td>-2.3 m (-7.6 ft) NAVD88 bottom</td>
</tr>
</tbody>
</table>
Simulating Residence Time

- Conservative, neutrally-buoyant, generic tracer in model
- Start with uniform 1 kg/m3 in area of interest
- Run model for 1 week, compare initial & final concentrations in area of interest between the 2 alternatives
Results – Existing Conditions
Results – 60 m Opening

Western area of interest: concentrations drop below 50% of initial level 2 days faster

Eastern area of interest: concentrations drop below 50% of initial level 1.5 days faster
Reduction in Residence Time

<table>
<thead>
<tr>
<th>Stratum</th>
<th>Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>80%</td>
</tr>
<tr>
<td>B</td>
<td>82%</td>
</tr>
<tr>
<td>C</td>
<td>50%</td>
</tr>
</tbody>
</table>
Conclusions

• Relief bridge effective in increasing exchange between area of interest and greater Tampa Bay
• Allows for freshwater runoff to be more readily dispersed, increasing salinity in the area
• Help return hydrodynamic conditions to pre-causeway historical conditions
• Gradually restore seagrass population to historical healthy condition
Conclusions

• Construction currently underway, completion Summer 2019
Further Work in Tampa Bay: Cooper’s Bayou
Overview

• Previous work inspired new investigations elsewhere
• Build upon 2017 study focused on stormwater runoff
• Increase circulation in historic seagrass areas in western OTB
• Use same methodology as before (generic tracers) to track water originating in Cooper’s Bayou and surrounding waters
Model Domain

- Based on work from a 2017 study
- Three grids (coarse, medium, fine) using Delft3D’s domain decomposition
Model setup

- Grid encompassing Old Tampa Bay, with increasing spatial detail within Cooper’s Bayou
- Bathymetry from previous model
- Tidal boundary at Gandy Bridge
- Five model scenarios
- Residence time defined as the time to reach 10% of initial concentration of tracer (i.e. a 90% reduction)
Model scenario 1: Base conditions

- Existing conditions, plus:
 - bayou dredging to 4 ft below MSL
 - Improved mangrove channel (option 2 in previous study)
 - channel enlargement at Damascus Rd. (current project)
Model scenario 2: Eastern cut

- Base conditions, plus:
 - ~180 ft channel through the narrowest section of mangroves on the eastern side of the Bayou (circled in red)
Model scenarios 3-5: Eastern cut + SR60 opening

• Base conditions, plus:
 • ~180 ft channel through the narrowest section of mangroves on the eastern side of the Bayou (circled in red)
 • channel through SR60 east of Damascus Rd (circled in red) (800, 400, 200 ft widths tested)
Residence time, Bayou tracer, Base vs. Scenario 2

Scenario 1

Scenario 2
Residence time, Bayou tracer, Base vs. Scenario 3
Change in Residence time (%), Bayou tracer, vs. Base

Scenario 2

Scenario 3
Results

<table>
<thead>
<tr>
<th>Location</th>
<th>Scenario</th>
<th>Residence time (days)</th>
<th>Change vs. Base (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>south bayou</td>
<td>Base</td>
<td>3.17</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Eastern cut</td>
<td>2.75</td>
<td>-13</td>
</tr>
<tr>
<td></td>
<td>Eastern cut + SR60 opening 800 ft</td>
<td>2.67</td>
<td>-16</td>
</tr>
<tr>
<td></td>
<td>Eastern cut + SR60 opening 400 ft</td>
<td>2.75</td>
<td>-13</td>
</tr>
<tr>
<td></td>
<td>Eastern cut + SR60 opening 200 ft</td>
<td>2.75</td>
<td>-13</td>
</tr>
<tr>
<td>middle bayou</td>
<td>Base</td>
<td>2.75</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Eastern cut</td>
<td>2.67</td>
<td>-3</td>
</tr>
<tr>
<td></td>
<td>Eastern cut + SR60 opening 800 ft</td>
<td>2.17</td>
<td>-21</td>
</tr>
<tr>
<td></td>
<td>Eastern cut + SR60 opening 400 ft</td>
<td>2.08</td>
<td>-24</td>
</tr>
<tr>
<td></td>
<td>Eastern cut + SR60 opening 200 ft</td>
<td>2.67</td>
<td>-3</td>
</tr>
<tr>
<td>north bayou</td>
<td>Base</td>
<td>2.67</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Eastern cut</td>
<td>1.67</td>
<td>-37</td>
</tr>
<tr>
<td></td>
<td>Eastern cut + SR60 opening 800 ft</td>
<td>1.67</td>
<td>-37</td>
</tr>
<tr>
<td></td>
<td>Eastern cut + SR60 opening 400 ft</td>
<td>1.67</td>
<td>-37</td>
</tr>
<tr>
<td></td>
<td>Eastern cut + SR60 opening 200 ft</td>
<td>1.67</td>
<td>-37</td>
</tr>
</tbody>
</table>
Summary

• Two of a number of projects in Tampa Bay seeking to enhance / restore historical flow pathways
Thank you!

Questions?