

Practical applications of drones (UAVs) for aerial mapping of beach and nearshore habitats & comparison to full-scale manned aircraft using GIS-based hardbottom classification

> Chip Baumberger, Project Scientist Dustin Myers, UAV Coordinator Brent Gore, GIS Coordinator

AERIALS BACKGROUND

Aerial Photography – observing change for 160 yrs

Honoré Daunier. Published in Le Boulevard 25th May, 1862

Hot air balloons

- Earliest method
- Nadar, Paris 1858

Manned aircraft

- 100+ years
- Photogrammetry revolutionized WWI

CSA Ocean Sciences Inc.

AERIALS BACKGROUND

Aerial Photography – observing change for 160 yrs

Hot air balloons

- Earliest method
- Nadar, Paris 1858

Manned aircraft

- 100+ years
- Photogrammetry revolutionized WWI
- ◀ 1952 Ft. Pierce Inlet
- Still the preferred platform today

MANNED AIRCRAFT

- Flown at ~10,000 ft
- Cover large area/short flight times
- Accuracy with ground controls
- 50 megapixel camera

Potential Cons:

- Resolution 15 cm (6 in) per pixel
- Speed of deployment
- High cost
- Logistically intensive

AERIAL REQUIREMENTS

Guidance: Nearshore Hardbottom Monitoring for Beach Erosion Control Projects, FDEP Joint Coastal Permits

- Hardbottom classification from aerials 2014 Monitoring Standards
- Field team report hardbottom conditions
 - Short windows of opportunity
 - Manned aircraft costly, not always timely

Identified Needs:

- Faster response time
- High resolution images
- Accurate georeferencing
- Lower cost

IMAGERY STANDARDS

MONITORING STANDARDS FOR BEACH EROSION CONTROL PROJECTS

Division of Water Resource Management Department of Environmental Protection State of Florida

FDEP Standards for Aerial Photography Acquisition include:

- Ground sampling distance (GSD) ≤15 cm (6 in)/pixel
- Horizontal accuracy 1 in = 500 ft
- Ground controls (2 cm accuracy) every 7-12 miles
- Sun angle ≤ 30°
- No cloud cover

AERIAL INTERPRETATION

- Orthomosaics from manned
 aircraft
- Geospatial analysis: area of Hardbottom cover
 - Esri ArcGIS and ERDAS Imagine
 - Ground-truthing: software calibration, increase accuracy
 - Accuracy assessment –software determines error
- Deliverable shapefile overlaid on aerials

UAV CAPABILITIES

Pros:

- Low cost
- Portable, quickly deployed
- \leq 4 cm/pixel resolution
- Accurate positioning

Cons:

- Lower megapixel cameras
- Longer flight times
- Short battery life
- Small payload
- FAA regulations

CSA Ocean Sciences Inc.

Early R&D - drone vs. manned aircraft Martin County Artificial Reef

UAV flight 1/26/2017

Elevation: 400 ft GSD 2 in/pixel Manned flight 7/28/2017

Elevation: 10,000 ft GSD 6 in/pixel

Early R&D – drone vs. manned aircraft Martin County Artificial Reef Manned flight 7/28/2017

Early R&D – drone vs. manned aircraft Martin County Artificial Reef

UAV flight 1/28/2017

Early R&D - drone vs. manned aircraft St. Lucie County

UAV Flight 07/11/2017 Elevation: 400 ft GSD 2 in/pixel Manned Flight 8/22/2016 Elevation: 10,000 ft GSD 6 in/pixel

High resolution and accuracy:

- Hypothesis : Suitable for hardbottom aerial extent
- Potential: habitat classification

HABITAT CLASSIFICATION

FDEP Coral Reef Conservation Program Shallow Water Habitat Mapping ¹

- Habitat classified on aerial maps
- Extensive ground-truthing
- Expensive aerials and LADS

UAV

- Lower labor & cost
- Better imagery
- Habitat depiction for HB community characterization

¹ Walker, B.K. and Klug, K. 2014. Southeast Florida shallow-water habitat mapping & coral reef community characterization. Florida DEP Coral Reef Conservation Program report. Miami Beach, FL. Pp. 83.

CSA Ocean Sciences Inc.

AERIAL INTERPRETATION

Hypothesis testing

- Manned aircraft aerials acquired
- Aerial interpretation required for project
 - Collected UAV aerials 33 days after manned flight
- Conducted interpretation on each dataset

RESULTS

Total Area Analyzed: 77 Acres

Drone classification

Manned aircraft classification

CSA Ocean Sciences Inc.

RESULTS

Drone

Manned aircraft

RESULTS

Drone

Manned aircraft

ACCURACY ASSESSMENT

Drone

Total Accuracy: 96.7% Kappa Coefficient: 0.880 Total Acreage: 4.676

Manned aircraft Total Accuracy: 95.8% Kappa Coefficient: 0.847 Total Acreage: 3.874

SUMMARY

Drone:

- Higher resolution
- Discern finer details
- 1% greater area & accuracy
- Higher contrast between
 bottom types

Manned Aircraft:

- Collect entire area at once
- Collected under optimal conditions
- Ground controls provided
 better rectified orthomosaics

CONCLUSIONS

Manned aircraft are currently FDEP permit required **However**,

Drones ARE capable:

- Similar error rate in classification
- Better image resolution
- Considerable cost reduction
 - ~ 25% the cost of manned aircraft
- Fast response time

Take advantage of optimal field conditions

Potential for increased precision

FUTURE APPLICATIONS

Goals:

- 1. Refine UAV imagery collection, accuracy & precision
 - White balance, exposure, ground controls
- 2. Develop UAV standards to meet Agency requirements
- 3. R&D UAV image collection for habitat classification
- 4. Further investigate UAV utility for other applications

QUESTIONS?