The Value of Navigation Dredged Material to Ecosystem Restoration and Coastal Resiliency

Terri Jordan-Sellers & Eric Summa USACE – Jacksonville District

Anne McCarthy & Dr. Mark Fonseca CSA Ocean Sciences, Inc.

National Conference on Beach Preservation Technology – February 3, 2016

Trusted Partners Delivering Value, Today and Tomorrow

US Army Corps of Engineers
BUILDING STRONG®

Miami Harbor GRR & EIS

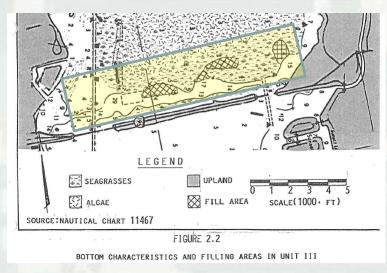
- Project Feasibility Study 1990-2004
- Unavoidable impacts to seagrass beds* south of Fisherman's Channel
 - ▶ 0.2 acres direct impact.
 - ▶ Up to an additional 7.7 acres due to side slope sloughing.
- Compensatory mitigation required for unavoidable impacts. What to do?

- *Grow in shallow areas
- Support a large variety of marine species
- T&E; EFH
- Stabilize shorelines
- Reduce wave impact

Previous Hole Projects

- 1994 Miami-Dade DERM (Milano & Deis, 2006)
- 2.6 acre dredge hole in north Biscayne Bay filled with dredged material from PortMiami expansion 1993-1995.
 - ► Partially successful filling. Did not cap with finer grained material. Insufficient \$\$.
 - ► 12,597 planting units. Max survival of transplants 60%

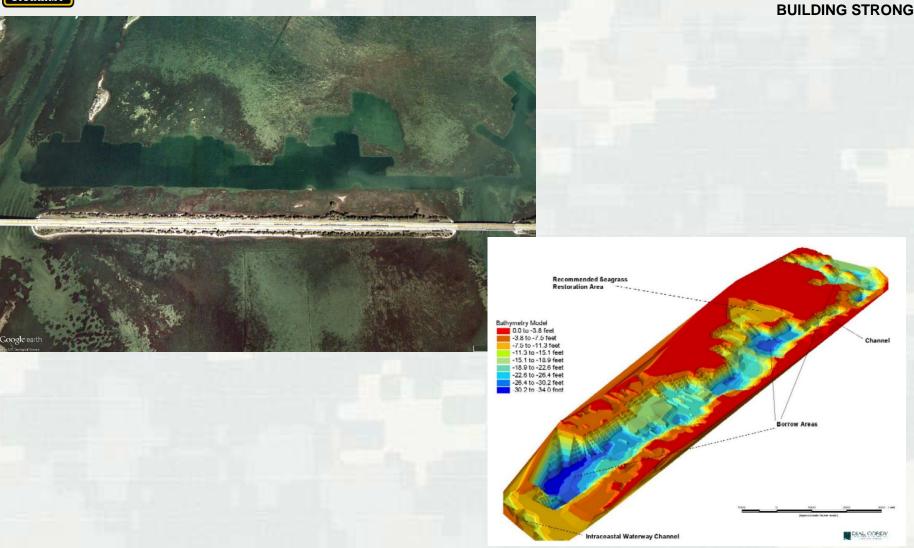
Finding the JTMA Site


BUILDING STRONG

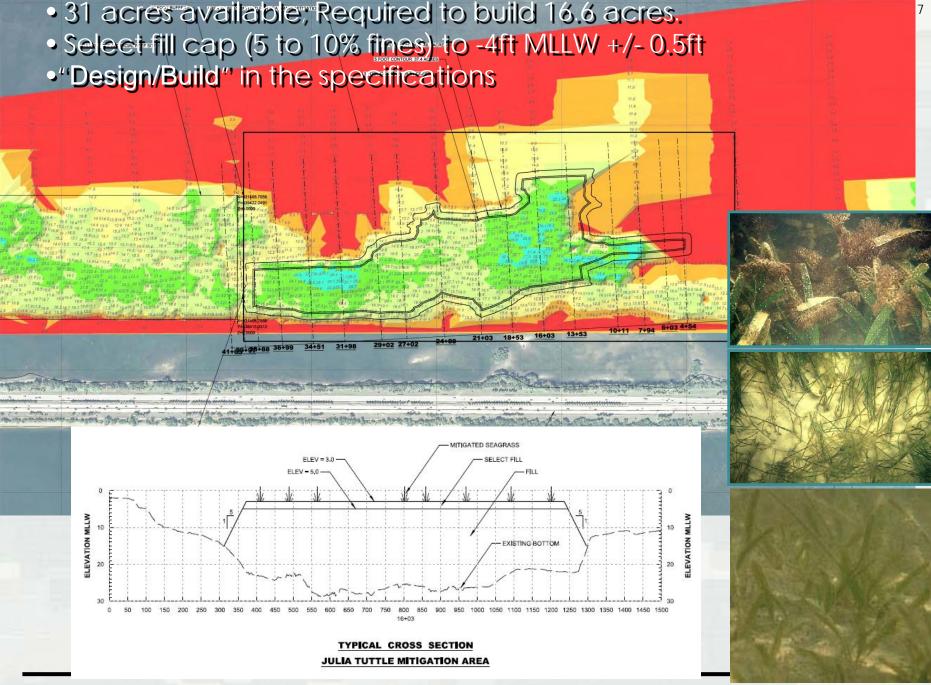
"Filling Program for Dredged Depression in North Biscayne Bay." Inventory of Fill Areas

(Coastal Tech 1994)

TABLE 2.1 PHYSICAL CHARACTERISTICS OF POTENTIAL FILLING AREAS IN NORTH BISCAINE BAY

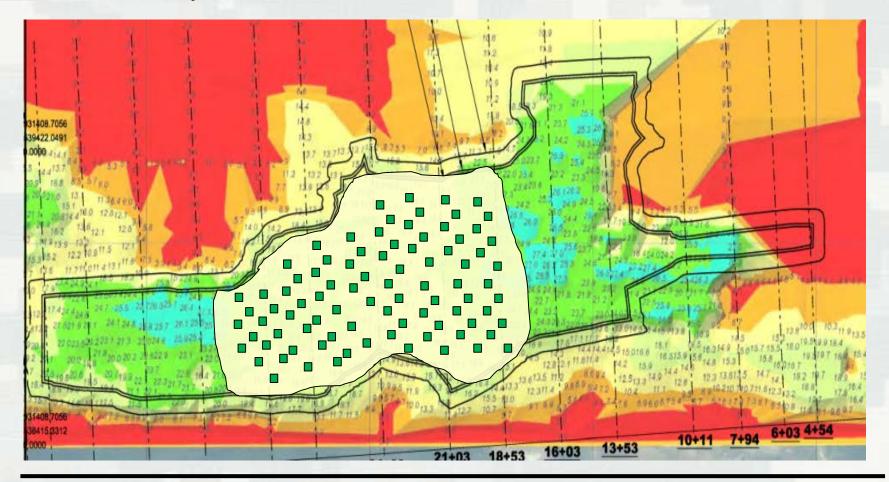

FILL AREA	WATER DEPTH (ft)	SURFACE AREA (acres)	BOTTOM MATERIAL	AMBIENT DEPTH (ft)	MAXIMUM CURRENT VELOCITY (ft/sec)	SUSPENDED SOLIDS (mg/1)	ESTIMATED FILL RQD.	FILL TYPE	POTENTIAL ENVIRONMENTAL BENEFIT
II-A	7.0	10	Sandy	2.0-5.0	0.2	10	46,000cy	Dredge Spoil	Seagrass Growth
II-B	7.0-8.0	46	Sandy	4.0-6.0	0.2	10	300,000cy	Dredge Spoil	Seagrass . Growth
II-C	8.0	3	Muddy	6.0	0.2	8	3,000cy	Coarse Sand	Mud cap
III-A	13.0-17.0	18	Muddy	3.0-6.0	0.3	5	290,000cy	Const. Debris	Artific. Reef
III-B	16.0-24.0	16	Muddy	5.0-6.0	0,3	6.	360,000cy	Const. Debris	Artific. Reef
III-C	4.0-7.0	4	Muddy	2.0-3.0	0.3	7	19,000cy	Dredge Spoil	Seagrass Growth
IV-A	7.0-8.0	4	Muddy	1.0-3.0	1.0	13	31,000cy	Dredge Spoil	Seagrass Growth
IV-B	7.0-8.0	31	Sandy	4.0-6.0	1.0	6	150,000ey	Dredge Spoil	Seagrass Growth

"Julia Tuttle Dredge Hole"


Julia Tuttle Causeway

- Hole was dredged in Biscayne Bay circa 1959 as fill material for the Julia Tuttle Causeway from Miami to Miami Beach.
- Low sediment inflow in the Bay made it unlikely that the hole would repair itself to be able to support seagrass

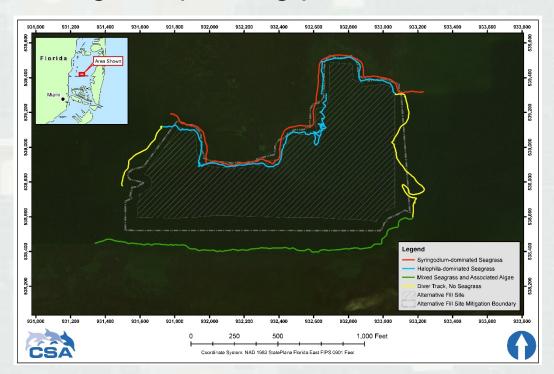
Trusted Partners Delivering Value, Today and Tomorrow



Seagrass Planting

BUILDING STRONG

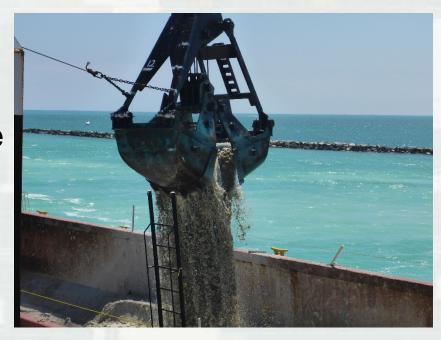
FDEP Permit required 7.15 acres of the 14.3 acre site to be planted with harvest from adjacent beds



Site Design

- Confirm existing seagrass boundary
- ID presence of Johnson's seagrass (Halophila johnsonii)
- Develop harvesting and planting plans

Construction of the Site


January 18, 2014 Google Earth Photo

Base Fill

- 560,000 CY of excavated dredged material placed in the JTMA hole to create 16.99 acres of seagrass habitat instead of placement in Ocean Dredged Material Disposal Site (~600 ft of water)
- 1,192 scow loads from Jan 8,
 2014 to Oct 19, 2014.
- Loads limited to <1,000
 <p>CY/scow due to depth
 limitations accessing the site
 from the IWW.

Transport & Placement

~5.0 mile one way trip
Through 3 bridges in the
Intracoastal
Waterway

Base Material Complete

December 15, 2014 Google Earth Photo

Select Fill Deployment

BUILDING STRONG

Mined Material <5% fines

Loaded on barges and transported to the site

Gee Whiz:

- 285 barge loads
- 114,425 tons
- 5,500 dump trucks
- CEMEX Krome Quarry in Miami

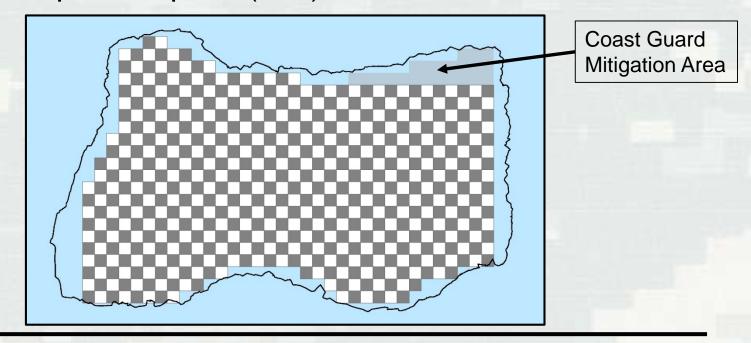
Placing Select Fill

BUILDING STRONG

Dredged material was capped with 85,000 CY upland mined "select fill"

Load #1 placed Jan 8, 2015 and Load #285 was placed on July 7, 2015. 180 Days of active filling.

Site Layout

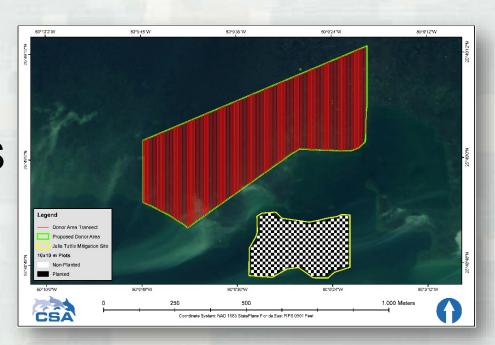


BUILDING STRONG

Checkerboard

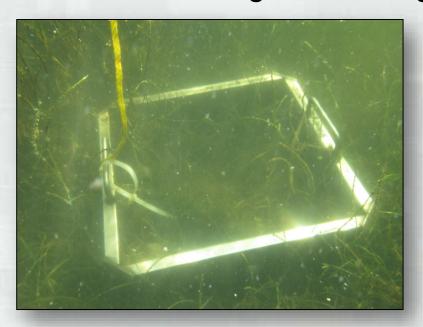
- > 14 acres of seafloor
- 580 plots, ea. 100 m²
- > 7 acres planted plots (290)

- Fixed corner stakes
- 100 Planting Units plot⁻¹
- 29,000 PU



Donor Site Selection

- Joint survey FDEP, USACE, and CSA
- "Proximal" and adjacent to the JTMS
- Area of ~273,000 m² selected
- Target species,
 Syringodium filiforme



Harvesting

- 0.25 m² harvest plots
- ~ every 2 m along 100 m transects
- "Cookie cutters" used
- Stored in situ in large mesh bags

PU Assembly

- Material sorted in flow-through table
- Syringodium filiforme (aerial and sediment rhizomes w/ apicals)
- Non-target seagrass discarded
- 4-5 rhizome apicals + staple = 1 PU
- QC checks on apical counts per planting tray (100 PU)
- Mean = 4.1 apicals PU⁻¹

Planting

- Divers inserted 1 PU m⁻²
- PU Buried just beneath the sediment surface
- Manatees observed eating PUs

Bird Stake Installation

- Each bird stake marked by plot number
- 1,160 stakes (corners of planted plots)
- Roost ~0.3 m (1 ft.) above water surface (mean high tide)

USCG Mitigation

BUILDING STRONG

Mitigation for dredging at the Miami Beach

Coast Guard

 Opportunity to increase seagrass habitat restoration at JTMS


 0.54 acres, conterminous 10 m x 10 m plots planted (no checkerboard)

Monitoring

- Survival survey
 - Miami Harbor mitigation: 5 Y by Miami-Dade County
 - USCG mitigation: 5 Y by CSA

Initial Results ~ 30 Days

- Miami Harbor PUs 97.6% survival
- USCG PUs 98.2% survival
- Baseline USCG data
 - Mitigation Site: 1% Total Seagrass; 13.8% Macroalgae
 - Reference Site: 55.0% Total Seagrass; 1.0 % Macroalgae

Collateral colonization

BUILDING STRONG

Volunteer seagrass

- · H. wrightii
- · S. filiforme
- H. decipiens
- · H. englemanii
- T. testudium

Macroalgae

- Halimeda
- Batophora
- Caulerpa

Future

- Quantify recovery trajectory species⁻¹
- Compare seagrass cover and density
- Assess overcompensation response
- Seasonality of aerial runners

Questions?

BUILDING STRONG

Thank You to all the team members that helped make this project a success!

