2016 National Conference on Beach Preservation Technology

The Role of Wind in Longshore Currents

Carolina Burnette and William Dally

University of North Florida, Jacksonville, FL

10 years of data

Field data collection

Spessard Holland North Beach Park - Melbourne Beach

Acoustic Doppler Current Profiler (ADCP)

- Installed offshore ≈ 610 m at a mean depth 8.5 m depth (9/2001 - 10/2011)
- Current speed and direction measured over the water column (Δz = 0.3m).

Anemometer

- Mounted to a 10 m tall tower on the dune (9/2002 – 10/2008)
- Wind speed and direction

Motivation

Mean Vertical Profile of Longshore Current

Empirical Orthogonal Function Analysis (EOF)

Year	Cross-shore Eigenfunctions		Longshore Eigenfunctions	
	Eigenvalues variance	Eigenvalues cumulative variance	Eigenvalues variance	Eigenvalues cumulative variance
2002	94.80	94.80	98.80	98.80
	4.40	99.20	0.90	99.70
	0.50	99.70	0.20	99.90
2003	94	94.00	98.8	98.80
	5.2	99.20	0.7	99.50
	0.6	99.80	0.4	99.90
2004	95.3	95.30	98.9	98.90
	4.1	99.40	0.7	99.60
	0.4	99.80	0.3	99.90
2005	90	90.00	98.4	98.40
	5.7	95.70	1	99.40
	3.2	98.90	0.4	99.80
2007	94.6	94.60	98.6	98.60
	4.7	99.30	1.1	99.70
	0.6	99.90	0.2	99.90

Spatial Eigenfunctions

The first spatial Eigenfunctions of the cross-shore and the longshore components represent the vast majority of the variability each year.

First Longshore Temporal Functions

First Cross-Shore Temporal Functions

Weekly running average of longshore current and longshore wind stress

Wind Stress [N/m²]

Year	Longshore Wind stress	Cross-shore Wind stress
2002	-21.1	-179.8
2003	-92.8	-505.8
2004	13.5	-473.5
2005	-33.2	-516.4
2007	59.7	-207.2
Net	-73.8	-1882.6

Longshore Volume Flux

2007

Net

1323.50

15026.17 -5479.95

-795.95

527.55

9546.22

Longshore Current Vs. Longshore Wind Speed

Cross-shore Current Vs. Cross-shore Wind Speed

Conclusions

- * Longshore currents measured outside the surf zone are highly correlated with the measured longshore component of the wind.
- * Most of the longshore wind influence is in the upper 20% of the water column.
- Strong seasonality in both direction and intensity of the longshore current.
- The first spatial and temporal eigenfunctions account for 98% of the variation in the longshore current and 95% of the variation of the cross-shore current.
- * Although the net longshore surface currents for the five years are directed towards the north, at the bottom of the water column it appears that the mean longshore currents are to the south.

Future Work

- Examine correlation of storm waves (i.e. Hs ≥ 1.75 m) with the longshore current.
- * Look more closely for a mass flux balance in the crossshore direction.
- * Add additional years using wind data from Port Canaveral.

Thanks