Evaluating Expected Dredging Costs for Highly Variable Market Conditions

Steven C. Howard, P.E.

Kevin R. Bodge, Ph.D., P.E. **Christopher G. Creed,** P.E.

2015 National Conference on Beach Preservation Technology February 4-6, 2015

olsen associates, inc.Jacksonville, Florida

Market Volatility

- Historically, dredging/beach costs have been relatively stable and predictable for projects of similar scope.
- Recently, costs have been highly variable, with wide ranges.
 - Limited competition for some projects,
 - Market conditions,
 - Increased distances to offshore sand resources,
 - Contractors accounting for risk in different ways, etc.
- Wide variations in costs make future cost projections more difficult.

Recent Project Example

		GOVT. EST.		BID #1		BID #2	
BID ITEM	Quantity	Unit Price	Est. Amount	Unit Price	Est. Amount	Unit Price	Est. Amount
Mob.			\$2,476,000		\$3,435,000		\$4,750,000
Sand	630,000	\$6.30	\$3,969,000	\$6.80	\$4,284,000	\$9.77	\$6,155,100
Tilling	38	\$579	\$22,000	\$295	\$11,200	\$650	\$24,700
Vibration			\$186,700		\$24,800		\$49,500
Turbidity			\$37,000		\$42,300		\$29,000
Endangered Species			\$59,600		\$9,400		\$29,000
TOTAL			\$6,750,200		\$7,806,700		\$11,037,300

Role of the Consulting Engineer

- Project owners require a reasonable level of confidence in cost guidance.
- Consultants use cost history and market conditions to guide project cost analyses.
 - Other corporate models use probability.
 - Goal is to capture market trends by taking a macro approach to pricing.
 - Should begin at the project-planning phase.

Probabilistic Methods are Widely Used to Study Variability and Uncertainty

This is not news:

This is news:

- The U.S. Army Corps incorporates risk-based analyses in the development of project cost contingencies.
- Contractors assess risk and uncertainty to establish their expected project cost.

PROBABILISTIC ANALYSIS DOESN'T NEED TO BE DIFFICULT OR EXPENSIVE

- Excel Add-In
- Monte-Carlo Simulator
 - Multiple Probability
 Distributions
 - Customizable
 - GUI Interface
- Fast and Flexible

Example Product:

"Risk Analyzer"

www.Add-Ins.com/analyzer/
\$49.95

"Project X": Beach Renourishment

- Cutter Suction Dredge
- 15,000 feet Max. Pump Distance
- 630,000 cubic yards
- Beach Tilling
- Construction Monitoring:
 - Vibration Control
 - Environmental Protection
 - Turbidity Monitoring, etc.

Probable Costs to Construct "Project X"

- Mobilization
- Sand Unit Price
- Sand Volume
- Tilling
- Acreage
- Construction Mon.

Study Values

- = \$2.8M
- = \$6.90/cy
- = 630,000 cy
- = \$500/ac.
- = 40 ac.
- = \$500,000

TOTAL

= ~\$7.6M

Assessing Uncertainty with Risk Analyzer

- 1. Assign variables;
- 2. Combine variables;
- 3. Assign range of values;
- 4. Assign probability distributions;
- 5. Run Monte-Carlo simulation; and
- 6. Evaluate output.

1) Assign and 2) Combine Variables

- Mobilization / Demobilization
- Sand Unit Price
- Sand Volume
- Tilling
- Acreage
- Construction Management
- TOTAL

VARIABLES
CONTAINING
UNCERTAINTY

3) Value Ranges and 4) Probability Distributions

Probability Function (Variable 1)

Mobilization / Demobilization

Study	Min				Max
File	Allowed		Expected		Allowed
Value	Value	10/90	Value	90/10	Value
\$2,800,000	\$1,000,000	\$1,695,891	\$2,866,667	\$4,129,722	\$6,000,000

Pert distribution

Probability Function (Variable 2)

Sand Unit Price

Study	Min				Max
File	Allowed		Expected		Allowed
Value	Value	10/90	Value	90/10	Value
\$6.90	\$4.00	\$4.92	\$6.90	\$9.12	\$13.00

Pert distribution

Probability Function (Variable 3)

Sand Volume

Study	Min					Max
File	Allowed		Peak	Expected		Allowed
Value	Value	10/90	Value	Value	90/10	Value
630,000	450,000	529,779	630,000	630,000	728,781	810,000

Triangular distribution

Probability Function (Variable 4)

Tilling

Study	Min					Max
File	Allowed	_	Peak	Expected		Allowed
Value	Value	10/90	Value	Value	90/10	Value
\$500	\$150	\$300	\$500	\$483	\$659	\$800

Triangular distribution

Probability Function (Variable 5)

Construction Mon.

Study	Min					Max
File	Allowed		Peak	Expected		Allowed
Value	Value	10/90	Value	Value	90/10	Value
\$500,000	\$250,000	\$343,674	\$400,000	\$500,002	\$684,481	\$850,000

Triangular distribution

Sensitivity Report

TOTAL				Va	riance
sensitivity to:	10/90	Study	90/10	Amount	Cumulative
Sand Unit Price	6,421,851	7,667,000	9,067,61	47%	47%
Mob./Demob.	6,562,891	7,667,000	8,996,772	40%	87%
Sand Volume	6,975,472	7,667,000	8,348,59	13%	99%
Const. Monitoring	7,510,674	7,667,000	7,851,481	1%	100%
Tilling Unit Price	7,658,981	7,667,000	7,673,362	0%	106%

5) Run Monte-Carlo Simulation

- A. Select number of simulations.
- B. Select variables to include as input & output.
- C. Run Simulation.

Monte-Carlo Simulation

6) Output

TOTAL Results

Minimum result	\$4,005,324
Maximum result	\$13,172,321
Expected value	\$7,729,394
Std Deviation	\$1,469,926

\$7,667,000 Study value 50.8% of results are equal or lower 49.2% of results are equal or greater

Out of 5000 simulations 5000 had numeric values. 0 had error values.

Of those with	numeric values
5% <=	\$5,478,438
10% <=	\$5,887,403
15% <=	\$6,160,818
20% <=	\$6,429,166
25% <=	\$6,649,449
30% <=	\$6,847,088
35% <=	\$7,063,554
40% <=	\$7,252,459
45% <=	\$7,442,526
50% <=	\$7,632,781
55% <=	\$7,830,838
60% <=	\$8,015,045
65% <=	\$8,226,169
70% <=	\$8,467,876
75% <=	\$8,692,286
80% <=	\$8,984,447
85% <=	\$9,322,581
90% <=	\$9,721,374
95% <=	\$10,292,018
100% <=	\$13,172,321

\$7,667,000

If TOTAL is: (Chg to do what ifs) 50.8% of results are equal or lower 49.2% of results are greater

6) Output

50% Prob. price is less than \$7.6M

80% Prob. price is less than \$9M

5% <= \$5,478,438 10% <= \$5,887,403 15% <= \$6,160,818 20% <= \$6,429,166 25% <= \$6,649,449 30% <= \$6,847,088 35% <= \$7,063,554 40% <= \$7,252,459 45% <= \$7,442,526 50% <= \$7,632,781 55% <= \$7,830,838 60% <= \$8,015,045 65% <= \$8,226,169 70% <= \$8,467,876 75% <= \$8,692,286 80% <= \$8,984,447 85% <= \$9,322,581 90% <= \$9,721,374 95% <= \$10,292,018 100% <= \$13,172,321

6) Output

Presenting Model Results

"Project 'X' is anticipated to cost between \$7.1M and \$8.2M."

"There is a 20% probability that project costs will exceed \$9M."

Study Value Plus 15% Contingency

Bid Results, Project X

Incorporating probability to develop contingencies based on market conditions increases the overall utility of a cost estimate and can be accomplished quickly and easily.

Evaluating Expected Dredging Costs for Highly Variable Market Conditions

Steven C. Howard, P.E.

Kevin R. Bodge, Ph.D., P.E. **Christopher G. Creed,** P.E.

2015 National Conference on Beach Preservation Technology February 4-6, 2015

olsen associates, inc.Jacksonville, Florida

