

28th Annual National Conference on Beach Preservation Technology February 4, 2015 Clearwater Beach, FL

PORT EVERGLADES SAND BYPASS PROJECT

AN IMPORTANT FUTURE SAND SOURCE FOR SOUTHEAST FLORIDA BEACHES

Christopher G. Creed, P.E.

e-mail: ccreed@olsen-associates.com

Steven C. Howard, P.E.

e-mail: showard@olsen-associates.com

Nicole S. Sharp, P.E.

e-mail: nsharp@broward.org

- Sand Requirements in Southeast Florida
- Known, Available Sand Sources
- Port Everglades Sand Bypass Project
- Physical and Economic Benefits of Port Everglades Sand Bypass Project

Where will this sand come from...?

How will *deficit* be made up...?

PORT EVERGLADES INLET

- Inlet established in 1926
- Federal Navigation Project 1930
- Major Expansions in 1962 and 1980
- No Natural or Artificial Sand Bypassing
- <u>Complete</u> Barrier to Littoral Drift
- Highly Accretional North Shoreline
- Chronically Erosional South Shoreline
- Low, Porous North Jetty
- Persistent Shoaling in Federal Channel

NORTH SHORELINE HISTORY

1962 – Spoil Shoal Placement

— 1970

— 1993

2002

--- 2012

INLET SHOALING

(Sand Transport Over, Through, and Around North Jetty)

INLET SHOALING

(Sand Transport Over, Through, and Around North Jetty)

Inlet system captures between 40k and 60k cy/yr (~90% of the net southerly sand transport)

PORT EVERGLADES SAND BYPASSING TIMELINE

1963: USACE County-wide Beach Erosion Study

1985: Alternative Sand Source Study

1988: Reconnaissance-Level Study

1994: State-sponsored Inlet Management Plan

1997: Economic Update to Inlet Management Plan

1999: State adopts Inlet Management Plan

2004: Detailed Feasibility Study

2007: Feasibility Study Addendum/Concurrence from State

Regarding Recommended Plan

2008-12: Initial Permit Application/State and Federal Coordination

(Const. approach that included blasting met significant local opposition)

2014: Develop project redesign without blasting and resubmit

application/reinitiate State and Federal coordination

2016: Construction (planned)

2019: First bypass event (planned)

PROJECT NEED AND PURPOSE

- Reestablish a significant portion of the sandsharing system across Port Everglades Inlet
- Reduce the need for sand from remote sources
- Reduce the long-term beach management costs
- Reduce/eliminate shoaling of the Federal channel

PHYSICAL BENEFITS

- Reduce and/or eliminate persistent updrift shoreline accretion and channel shoaling
- Long-term, sustainable, cost-effective sand source
- Sand volume equivalent to:
 - 90-100% of the demand along immediate downdrift shoreline
 - 30-50% of demand along south Broward beaches (Segment III)
 - 13% of deficit demand in Broward and Miami-Dade Counties
- Reduce impacts to offshore resources and nearshore hardbottom areas

ECONOMIC BENEFIT

- Economic benefit is realized through a long-term cost savings for sand (i.e., cost of construction and operation of sand bypass relative to other options)
 - Remaining offshore sources will be used to address
 - Current deficits in Broward
 - Miami-Dade County requirement through ~2030
 - Only other known option at this time is <u>upland</u> sand

Sand Bypass at Port Everglades

- Initial Investment = \$20M
- Future Event = 150,000 cy every 3 yrs (2.5 Mcy over 50 yrs)
- Future Cost = \$4M per event (~\$25/cy)
- Immediate local benefit, long-term regional benefit

Upland Sand

- Initial Investment = \$0
- Future Event = 150,000 cy every 3 yrs (2.5 Mcy over 50 yrs)
- Future Cost = \$10M per event (~\$65/cy)

ECONOMIC BENEFIT

Relative to upland sand, the bypass project is expected to save ~1.3M annually, or about \$30M over a 50-year period.

SUMMARY

- Future sand need in Broward and Miami-Dade County is expected to be roughly 26 Mcy over the next 50 years
- Of this, only about 7.6 Mcy, or 27%, has been identified as reliably available and acceptable
- Current expectations are that upland mines will meet a portion of the deficit
 - However...the long-term sustainability and acceptability of upland sand use has not been tested
- Sand bypassing at Port Everglades will be a sustainable and cost-effective long-term sand source
 - 13% of regional deficit / up to 100% of local deficit
 - Initial investment is expected to be recovered within ~14 yrs
 - Roughly \$30M cost savings over a 50-year period