

Numerical Modeling Analysis of the Katrina Cut Rubble Mound Structure

Gordon Thomson, PE, D.CE
Samantha Danchuk, PE, Ph.D.
Chris Day, PE
Mark Saunders, PE

- Project Location
- History of Breaching
- Katrina Cut
- Emergency Structure
- Risk Assessment and Modeling
 - Calibration
 - Inputs
 - Results
- Summary

1917

1925

1940

February 1992

March 2000

May 2005

June 2006

February 2008

May 2010

September 2011

- Emergency barrier constructed during Deepwater
 Horizon Spill to limit oil flowing into Mississippi Sound
- Designed and constructed by Thompson Engineering under an emergency permit
- Rubblemound with sand core

State has requested to leave the structure in place

 Goal of risk assessment is to provide information to permitting agencies

- Life Cycle Based Analysis
 - Quantify risks associated with structure
 - Breaching
 - Sediment transport
 - Impact to private property, navigation, SAV, pipelines

 Compare with and without structure condition over a 50 year period

- 50 year simulations
- Repeated historic storm record in sequence
 - 1917 to 1967
 - 1960 to 2010

- Average conditions based on 20 year WIS record
 - Non-storm waves were broken into 12 bins

- Performed using two sea level rise scenarios
 - USACE guidance for low and high SLR

Morfac and storm history for 1917 to 1967

- Calibrated for storm response and long-term volumetric change
 - Repeated Katrina breach
 - 20 year calibration run
- Model verification using Hurricane Ivan and Hurricane Isaac
 - Shoreline and volume changes
 - Breach width

Structure promotes longshore transport initially

 Breach forms in low lying area adjacent to structure

 Structure is flanked, cross shore transport dominates

Model Results: Without Structure

Model Results: Without Structure

Private Property (Land) Loss

Hurricane Isaac

- Method for 50 year life cycle analysis
 - Historic storm record
 - Longer calibration period
- Specific findings
 - No breaching along developed section until a major storm event in year 20
 - No difference in breaching potential along inhabited area between the with and without structure scenario
 - Breaching expected adjacent to structure during next major storm
 - Loss of property indistinguishable between with and without structure (within expected model accuracy)
 - Future land loss expected regardless of presence of structure

