City of Fort Pierce Marina
Island Breakwater Creation

National Conference on Beach Preservation Technology
February 14th, 2013

Jesse Davis, PE
Jenna Phillips
OUTLINE

• Background & Project Goals
• Construction
 – Materials
 – Tolerances
 – Site Conditions
 – Installation
• Lessons Learned
Project Location
Original Marina Layout
2004 Hurricane Season
Project Purpose

• Project Goals
 – 100-Yr Storm Protection
 – Positive Environmental Impact
 – Aesthetically Pleasing
Project Layout

- 12 Island Breakwaters & 1 Peninsular Structure
 - Total of 14.66 Acres
- Ecological Enhancements
 - > 12 Acres
 - Oyster Recruitment
 - Mangrove Habitat
 - Juvenile Fish Habitat
 - Shore Bird Habitat
- $18.9 Million Construction Cost
 - NTP Issued February 2012
 - Construction Finishes End of May 2013
Tern Island

- Geometry
 - 10.5 Acres
 - 1,500 ft x 300 ft
- Groin Structures
- Sand Interior
- Ecological Enhancements
 - Living Shoreline
 - Natural Limestone Reefs
 - Roosting Areas
Construction Components

- Geotextile Tubes – 10,700 lf
 - Perimeter Dike for Island Creation
 - Structural Core of Groins
 - Bench for Living Shoreline
- Marine Mattress – 250,000 sf
 - Foundation for Stone Placement & Scour Apron
 - Geotextile Tube Protection
 - Matrix for Oyster Recruitment & Mangrove Plantings

(Courtesy of Tetra Tech)
Geotextile Tubes

- High strength polypropylene, woven geotextile with UV stabilization
- Biologically/chemically inert
- MacTube OS500
 - Approx 500 ppi
- Tube Sizes:
 - 45’ circumference
 - 30’ circumference
 - Custom Lengths; average 100’ lengths
- Tube Schematic
 - Fill Port Spacing
 - Installation Straps
Geotextile Tubes

MacTube Design:

- Tube Geometry – GEOCOPS
- Fabric & Seam Strength (Factor of Safety)
- Fabric AOS - Fill Material Sediment Characteristics
- External Stability Calcs

\[L = \text{circumference of tube} \]
\[r = \text{radius of curvature} \]
\[p_c = \text{pumping pressure} \]
\[\gamma = \text{density of slurry} \]
Marine Mattress

Compartmental structures composed of high density, flexible, UV stabilized, polypropylene geogrid.

- Dual Project Purpose:
 - Protective Cushion Layer for 2.5 to 5 ton Limestone Boulders
 - Tube Foundation/Scour Protection

- UX T200 – 12” Thickness
 - Width = 5’
 - Lengths ranged from 10’ to 30’
 - Tult = ~113,000 lb/ft

- BX1500 – 6” Thickness;
 - Width = 6.5’
 - Lengths ranged from 5’ to 20’

- Stone Fill:
 - Ranges from 2” to 6” in diameter

- Approx. Weight = 110 pcf (12” x 20’ mat weights ~5.5 Tons)
Marine Mattress: Bi-Axial

Onsite Preparation
Marine Mattress: Uni-Axial

Onsite Preparation
Construction Tolerances

• Geotextile Tubes
 – Horizontal +/- 12”
 – Vertical varied based on application.
• Marine Mattresses
 – Varied based on application.
 • Tube coverage = 3”
 • Perimeter = 0”
 • Interior = 8”-12”
Site Conditions

- **Water Depths**
 - No Impact on mattress and tube installations.

- **Water Clarity**
 - Impacted marine mattress installations.

- **Currents**
 - Impacted tube installations.
Geotextile Tube Installation

• Production Rates
 – 450 CY in approximately 4 hours
 – Corresponds to ~100 LF of 45’ Circ. Tube

• Installation Methodology
 1. Install scour protection.
 2. Deploy tube at slack tide.
 3. Anchor tube.
 4. Fill until design elevation achieved.
Marine Mattress Installation

• Peak Production Rates
 – 70 Top Cover Mats
 – 30 to 40 Perimeter Mats

• Installation Methodology
 1. PVC stakes guide installations.
 2. Crane and lifting bar for rough placement.
Lessons Learned

• Install scour protection at terminal ends of sequential tube installations.
• Incorporate straps into bag designs.
• Site conditions will dictate installation rates.
• Perform periodic inspections.
• Experience a must for tube/mattress installations in adverse conditions with tight tolerances.
Project Benefits

• 100-yr Storm Protection
• Ecological Benefits
 – Living Shorelines
 – Natural Limestone Armor Reefs
 – Roosting Area
• Increase in Revenue
 – Marina Capacity
 – Eco-tourism
Special Thanks

City of Ft. Pierce
Ed Seissiger, Project Manager
John Andrews, PE City Engineer