Application of the Hypercube Method for the Efficient Simulation of Long-Term, Nearshore Wave Records

Case Study and Verification Using Observed Wave Data Near the Mississippi/Alabama Coast

Christopher M. Day, PE, D.CE
Joao Dobrochinski
Long-Term Nearshore Wave Records

APPLICATIONS

• Beach erosion modeling:
 – GENESIS – Transformation of the 5-20 year offshore wave record to the depth of closure or breaking depth.
 – Delft3D & DNRBS – Selection of offshore wave case(s) based on the resulting wave energy in the nearshore zone.

• Structural design of groins, jetties, and port structures:
 – Average and extremal (storm) wave statistics near beaches, inlets, and harbors.
Long-Term Nearshore Wave Records

APPLICATIONS

• Nearshore Wave Forecasting:

 – **RECREATION** – Transform an offshore forecast to predict the nearshore wave conditions for surfing conditions and the green, yellow, and red wave condition flags at public beaches.

 – **NAVIGATION** – Apply a similar method to predict wave conditions near inlets and harbors for boat and ship traffic, small craft warnings, etc.
Long-Term Nearshore Wave Records

GENERAL APPROACHES

• Forecast / Hindcast Model Databases –
 – U.S. Army Corps of Engineers Wave Information Studies.
 – NOAA National Centers for Environmental Prediction Databases & Forecasts (“WAVEWATCH”)
 – Good resolution and physics at “deep water” and intermediate depths (below “depth of closure”).
 – Nearshore records (near or above depth of closure) are either not available (WIS) or spaced at a relatively wide resolution (WAVEWATCH database).
 – Shallow water processes are only accounted for in the most recent hindcasts (i.e.: 2009-present).
Long-Term Nearshore Wave Records

GENERAL APPROACHES

• Nearshore wave measurements
 – Describes the waves at 1-2 locations.

• Time-dependent wave modeling
 – Can provide continuous coverage and specifically account for shallow water wave processes, however…
 – Computational time becomes excessive or prohibitive for very long wave records (5-20 years).

• "Hypercube Method"
 – Can account for shallow water wave processes, and…
 – Saves time by using 300-1200 of wave cases to summarize the long-term wave record instead of 10,000-500,000 individual time steps.
Who developed Hypercube method?

Hanson & Kraus (1989) – “Look-up” method used in GENESIS model. However, they did not attach the name “Hypercube” to the lookup method.

Instituto de Hidraulica Ambiental de la Universidad de Cantabria (IH Cantabria) (2009) – Independently developed a very similar method, but for a broader range of applications (coastal structures, port design, etc.). Coined the term “Hypercube”.
Hanson & Kraus (1989), *GENESIS Report 1* –

‘Rather than running the external wave model at every time step, a time savings technique is used in which the offshore wave conditions are divided into period and direction bands (Kraus et al. 1988). This procedure gives on the order of 50 to 100 period-direction bands, and refraction runs are made with the external wave model using unit wave height to provide what are termed “transformation coefficients” along the nearshore reference line’.

The “lookup” method, an early form of Hypercube, is a standard feature of GENESIS. It transforms a 5 to 20 year sequence of offshore waves at each time step to the depth of closure or breaking depth using a relatively small number of wave cases instead of every wave record.
Bonanata, Medina, Silveira, & Benedet (2010) –

“One must propagate all the sea states that are likely to be produced. Nevertheless, today, computational time makes the propagation of all sea states for the reanalysis series impossible. Thus, the following procedure is adopted:

a) Propagation of a matrix of possible wave cases with a distinct height, direction, period, and water level;

b) Calculation of a propagation coefficient and angle for these cases;

c) Interpolation of the propagation coefficient and angle for each event recorded at the point of reanalysis. For each water level, one may perform an interpolation in three dimensions (Hs, Tp, Dir.) to obtain the propagation coefficient and angle of that event in the study area.”
Identify 50-1200 H_s, T_p, and Dir. Classes

Offshore H_s, T_p, Dir.

Locate H_s, T_p, and Dir. classes bracketing each offshore wave

3-D linear interpolation with respect to H_s, T_p and Dir.

SWAN Results for 50-1200 H_s, T_p, and Dir. Classes

Nearshore H_s, T_p, Dir.
ADVANTAGES

• Flexible. Can be used with any wave transformation model that incorporates shallow water physics:
 – Refraction, Shoaling, Breaking, Diffraction, etc.
 – In Hypercube applications, SWAN is most commonly used, but other models (STWAVE, Mike21 models) can also be used.

• Substantial reductions (95-99%) in the number of Hypercube wave cases vs. the number of time steps in a time dependent wave model.

• If used as a forecast tool, there is no need to re-run the wave transformation model itself. Only a re-run of the 3-D interpolation is required.

• Has been used successfully in a wide variety of locations – Gulf Coast, Chesapeake Bay Entrance, Brazil, Spain.
LIMITATIONS

• The wave transformation model is run for cases in stationary (non-time dependent) mode.

• Several hours may be required for a wave to cross a very large area (i.e. several hundred miles). If the waves change at time scales that are faster than the “crossing time”, the stationary wave assumption can break down.

• When wind stress and/or storm surge is included, uniform wind velocities and/or water levels are usually assumed for each case. However, wind speeds and water levels can vary within each case with respect to both space & time.
CASE STUDY – AL / MS COAST

• Large collection of observed wave data over long periods of time (1990s – present).

• Wide range of applications for the results:
 – Dauphin Island, AL erosion control projects.
 – Navigation to/from Mobile Bay, Gulfport, Biloxi, etc.
 – Barrier island restoration & Deepwater Horizon “Berms” project at Chandeleur Islands, LA.

• Simulating Waves Nearshore (SWAN) model calibrated and verified for Dauphin Island, AL using observed offshore and nearshore wave data.

• Hypercube used to estimate 13 year series of waves near Dauphin Island, Mississippi barrier islands, & Chandeleur Islands.
Observed waves, 1996-2009

Observed waves, 1995-2009 (Buoy relocated March 2010)

Observed waves, 2000

Observed waves, late 1980s to early 1990s

Observed waves, 2001-2004

(Sources: [Details provided in the image map])
MODEL CALIBRATION / VERIFICATION

- Original calibration & verification of SWAN model performed using conventional methods – time dependent (non-stationary) wave simulations over 1-2 week periods.

- Processes included in SWAN –
 - Spectral waves – Each wave or wave case is an overlap of multiple wave components, each with its own period (frequency) and direction.
 - Refraction – Change in wave direction with depth.
 - Shoaling – Change in wave height with depth.
 - Diffraction – Lateral spreading of wave energy into bays, harbors, etc.
 - Whitecapping
 - Bottom friction
 - Breaking
 - Non-linear triads – Transfer of wave energy from low to high frequencies (or from long to short wavelengths) in shallow water.
 - Local, wind-generated wave growth (wind stress).
MODEL CALIBRATION / VERIFICATION

- Original calibration & verification of SWAN model performed using conventional methods – time dependent (non-stationary) wave simulations over 1-2 week periods.

![Graph showing observed wave records used in SWAN verification.](image-url)
MODEL CALIBRATION / VERIFICATION

- Original calibration & verification of SWAN model performed using conventional methods – time dependent (non-stationary) wave simulations over 1-2 week periods.

Intermediate depth buoy at -113’ NAVD

Observed vs. Simulated.
Original calibration & verification of SWAN model performed using conventional methods – time dependent (non-stationary) wave simulations over 1-2 week periods.
OFFSHORE WAVE RECORD

• Primary data source were observed waves at Buoy 42040 (-792’ NAVD) from Dec. 4, 1995 to Dec. 31, 2008. Measurements included wave direction after Nov. 1, 2000.

• Missing height, period, and direction values were filled in using:
 – NOAA National Centers for Environmental Prediction, Western North Atlantic WAVEWATCH III hindcast at buoy after July 1, 1999.
 – Wave Information Studies (WIS) hindcast at nearby Station 350 (73350) before July 1, 1999.
ADDITIONAL DATA

• Observed winds at Buoy 42040. Gaps in wind record were filled in using:

• Observed water levels at Dauphin Island Tide Gage were added to the wave & wind record at Buoy 42040.
HYPERCUBE CASES

Large variety of wave cases, including the 52+ foot waves measured during Hurricanes Ivan (2004) & Katrina (2005).

Theoretical # of cases would be 2,340 (18 x 10 x 13).

Actual # of cases required based on wave record was 773.

<table>
<thead>
<tr>
<th>Sign. Wave Height (feet)</th>
<th>Peak Period (sec.)</th>
<th>Offshore Direction (deg.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3.3</td>
<td>4</td>
<td>22.5</td>
</tr>
<tr>
<td>6.6</td>
<td>6</td>
<td>45</td>
</tr>
<tr>
<td>9.8</td>
<td>8</td>
<td>67.5</td>
</tr>
<tr>
<td>13.1</td>
<td>10</td>
<td>90</td>
</tr>
<tr>
<td>16.4</td>
<td>12</td>
<td>112.5</td>
</tr>
<tr>
<td>19.7</td>
<td>14</td>
<td>135</td>
</tr>
<tr>
<td>23.0</td>
<td>16</td>
<td>157.5</td>
</tr>
<tr>
<td>26.2</td>
<td>18</td>
<td>180</td>
</tr>
<tr>
<td>29.5</td>
<td>20</td>
<td>202.5</td>
</tr>
<tr>
<td>32.8</td>
<td>22</td>
<td>225</td>
</tr>
<tr>
<td>36.1</td>
<td>24</td>
<td>247.5</td>
</tr>
<tr>
<td>39.4</td>
<td>27</td>
<td>270</td>
</tr>
<tr>
<td>42.7</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>45.9</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>49.2</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>52.5</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>55.8</td>
<td>42</td>
<td></td>
</tr>
</tbody>
</table>
SWAN model was used to estimate wave height & direction over the two modeling grids for each of the 773 cases.

Time steps assuming 10 minute intervals for entire 13 year record = 687,751.

% input reduction = 1 – (773/687,751) = 99.89%

<table>
<thead>
<tr>
<th>Sign. Wave Height (feet)</th>
<th>Peak Period (sec.)</th>
<th>Offshore Direction (deg.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3.3</td>
<td>4</td>
<td>22.5</td>
</tr>
<tr>
<td>6.6</td>
<td>6</td>
<td>45</td>
</tr>
<tr>
<td>9.8</td>
<td>8</td>
<td>67.5</td>
</tr>
<tr>
<td>13.1</td>
<td>10</td>
<td>90</td>
</tr>
<tr>
<td>16.4</td>
<td>12</td>
<td>112.5</td>
</tr>
<tr>
<td>19.7</td>
<td>14</td>
<td>135</td>
</tr>
<tr>
<td>23.0</td>
<td>16</td>
<td>157.5</td>
</tr>
<tr>
<td>26.2</td>
<td>18</td>
<td>180</td>
</tr>
<tr>
<td>29.5</td>
<td>20</td>
<td>202.5</td>
</tr>
<tr>
<td>32.8</td>
<td>225</td>
<td></td>
</tr>
<tr>
<td>36.1</td>
<td>247.5</td>
<td></td>
</tr>
<tr>
<td>39.4</td>
<td>270</td>
<td></td>
</tr>
<tr>
<td>42.7</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>45.9</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>49.2</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>52.5</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>55.8</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>
HYPERCUBE CASES

ADDITIONAL INPUT FOR EACH CASE

• Directional spreading for Buoy 42040 cases:
 – $T_p < 5 \text{ s}$, 25°
 – $T_p = 5-7 \text{ s}$, 14°
 – $T_p > 7 \text{ s}$, 11°

• Water levels:
 – Average of concurrent water levels for each wave case based on Dauphin Island Tide Gage, when available (738 of 773 cases).
 – Water levels for remaining 35 cases when tide gage was offline (post-storm periods) based on Hs & Storm Surge vs. return period curves or Mean Tide Level, whichever was higher.

• Winds – average of concurrent winds during each wave case.
QUALITY CONTROL

• Domain size:
 – 249 km (154 miles) from SW grid corner to north end of Mobile Bay.
 – For 6 second wave and a 30 m depth, the wave speed is roughly 9.3 m/s (21 mph).
 – Travel time for distance and wave above is on the order of 7.4 hours.

• Variation of water levels associated with each case:
 – Standard deviation for all 773 cases average 0.19 m (0.63 feet).

• Variation of wind velocities associated with each case:
 • Standard deviation for all 773 cases averages 47° for directions and 2.3 m/s (5.1 mph) for speeds.
SWAN RESULTS

Average Conditions

Wave Height (m) & Direction, Buoy 42040, Hs = 1 m, Tp = 6 s, 135°

Wind velocity = 4.86 m/s = 17.5 km/h, 131°
Final accur. OK in 95.23% of wet grid points.
SWAN RESULTS

Average Conditions

Nearshore & Bay Wave Height (m) & Direction, Buoy 42040, Hs = 1 m, Tp = 6 s, 135°

Hs (m)
Conditions similar to Hurricane Katrina (2005)

Wave Height (m) & Direction, Buoy 42040, Hs = 16 m, Tp = 14 s, 180°

Wind velocity = 28 m/s = 100.8 km/h, 159°
Final accur. OK in 95.57% of wet grid points.
SWAN RESULTS

Conditions similar to Hurricane Katrina (2005)
HYPERCUBE RESULTS

Estimated wave records at intermediate depth using concurrent, deep-water record & the 773 wave cases run through SWAN.

Intermediate depth buoy at -113’ NAVD
HYPERCUBE RESULTS

Mississippi Delta to Alabama Hypercube Results
Hurricanes Isidore & Lili

Buoy closer to MS outer islands & Chandeleur Islands at -44’ NAVD
HYPERCUBE RESULTS

Mississippi Delta to Alabama Hypercube Results
Hurricanes Isidore & Lili

Buoy closer to MS outer islands & Chandeleur Islands at -44’ NAVD
HYPERCUBE RESULTS

Buoy closer to MS outer islands & Chandeleur Islands at -44’ NAVD

Method estimates a brief drop in wave height with passage of Hurricane Katrina’s eye.
HYPERCUBE RESULTS

Mississippi Delta to Alabama Hypercube Results
Hurricane Katrina

Buoy closer to MS outer islands & Chandeleur Islands at -44’ NAVD
NEARSHORE WAVES AT DAUPHIN IS.
NEARSHORE WAVES AT DAUPHIN IS.

Buoy 42040, -792’ (-241 m) NAVD
- RMS $H_s = 1.3 \text{ m} = 4.2’$
- Average $T_p = 5.6 \text{ s}$
- Average Dir. = 124°

Profile DI-10, -22’ (-6.7 m) NAVD
- RMS $H_s = 0.7 \text{ m} = 2.2’$
- Average $T_p = 5.6 \text{ s}$
- Average Dir. = 169°
- Max $H_s = 3.8 \text{ m} = 12.3’$
Mobile Bay Entrance Wave Forecast
(Issued 2/4/2012, 06:00 GMT by NOAA)

- Offshore, 29.205°N, 88.205°W (Bouy 42040, Old Location)
- Mobile Pass Ebb Shoal, 30.162562427°N, 88.052295736°W
- Mobile Pass Channel 30.232002878°N, 88.036117317°W
NEARSHORE WAVE PREDICTION

Mobile Bay Entrance Wave Forecast
(Issued 2/4/2012, 06:00 GMT by NOAA)

- Offshore, 29.205°N, 88.205°W (Bouy 42040, Old Location)
- Mobile Pass Ebb Shoal, 30.162562427°N, 88.052295736°W
- Mobile Pass Channel, 30.232002878°N, 88.036117317°W
CONCLUSIONS & RECOMMENDATIONS

• The Hypercube method can realistically estimate a long-term series of nearshore wave data based on a concurrent record of offshore wave data under both average and extreme conditions.

• Substantial reductions in computational time (95-99%) can be realized using the “wave case” approach in Hypercube vs. a conventional application of a non-stationary wave model.

• Assigning a wind velocity to each wave case provides for higher & more realistic wave height estimates in most cases. The variability in wind speed & direction does not excessively compromise height or direction estimates. However...

• Future research should identify a more robust means of assigning a wind velocity to each wave case. IH Cantabria’s efforts are presently focusing on this aspect of the Hypercube method.
ACKNOWLEDGEMENTS

Deltares

Instituto de Hidraulica Ambiental de la Universidad de Cantabria (IH Cantabria)

National Oceanographic & Atmospheric Administration

South Coast Engineers, LLC

Town of Dauphin Island, Alabama

U.S. Army Corps of Engineers

U.S. Geological Survey

WRS Infrastructure & Environment, Inc., d/b/a WRScompass