Vibrations & Excitations ...what The Beach Boys didn't tell you

Florida Shore & Beach Preservation Association February 3, 2023

Dave Swigler, PE and Andy Studt Palm Beach County Department of Environmental Resources Management

Vibrations & Excitations ...what The Beach Boys didn't tell you

- County Projects
- FTA Manual
- Vibration Monitoring
- Results
- Conclusions

Beach Nourishments NCCSPP Segment I (2021/22) NCCSPP Segment III (2020/21)

Beach Nourishments
NCCSPP Segment I (2021/22)
NCCSPP Segment III (2020/21)

• Dune Restorations Singer Island (2021/22) Coral Cove (2021/22)

• Dune Restorations Singer Island (2021/22) Coral Cove (2021/22)

• Dune Restorations Singer Island (2021/22) Coral Cove (2021/22)

Transit Noise and Vibration Impact Assessment Manual (2018)

Federal Transit Administration (FTA), U.S. Department of Transporation

Transit Noise and Vibration Impact Assessment Manual

SEPTEMBER 2018

FTA Report No. 0123 Federal Transit Administration

PREPARED BY John A. Volpe National Transportation Systems Center

• Propagation of Ground-Borne Vibrations [Figure 5-1]

• Vibration Signal [Figure 5-2]

RMS Vibration Velocity Level (RMS L_v, VdB)

• Typical Levels of Vibration [Figure 5-4]

Response	PPV* (in/sec)	RMS L _v (VdB)
Human Annoyance	0.07	85
Human Perception	0.01	65
Background	0.00	50

*Inferred assuming a crest factor of 4.

• Construction Vibration Damage Criteria [Table 7-5]

Building/ Structural Category	PPV, in/sec	Approximate L,*
I. Reinforced-concrete, steel or timber (no plaster)	0.5	102
II. Engineered concrete and masonry (no plaster)	0.3	98
III. Non-engineered timber and masonry buildings	0.2	94
IV. Buildings extremely susceptible to vibration damage	0.12	90
*RMS velocity in decibels, VdB re 1 micro-in/sec		1

APT Bulletin, Journal of Preservation Technologies, 46 (2015)

Table 2. Damage Thresholds as Reported in USBM RI 8507

Conditions Observed	Typical Peak Particle Velocity (in/sec)
Threshold damage (hairline cracking in plaster, opening of old cracks, etc.)	2 - 3
	Never at < 0.5
Minor damage (hairline cracking in masonry, breaking of windows)	4 - 5
	Never at < 1.0
Major structural damage (cracking or shifting of foundations or bearing walls)	>5

• Vibration Levels for Construction Equipment [Table 7-4]

Equipment		PPV at 25 ft, in/sec	Approximate Lv [®] at 25 ft
Bila Duivan (impact)	upper range	1.518	112
File Driver (impact)	typical	0.644	104
Pile Driver (sonic)	upper range	0.734	105
	typical	0.17	93
Clam shovel drop (slurry wall)		0.202	94
Hydromill (slurry	in soil	0.008	66
wall)	in rock	0.017	75
Vibratory Roller		0.21	94
Hoe Ram		0.089	87
Large bulldozer		0.089	87
Caisson drilling		0.089	87
Loaded trucks		0.076	86
Jackhammer		0.035	79
Small bulldozer		0.003	58

• PBC County Vibration Monitoring

• County Projects: Beach Nourishments + Dune Restorations

Results

- Four County beach and dune projects... vibration monitoring resulted in <u>one instance of the FTA damage criteria being</u> <u>exceeded</u>.
- Exceedance during the Coral Cove Dune Restoration Project.
 - The <u>parcel was under major redevelopment</u>, which included structural rehabilitation of the condominium, promenade, and fronting seawall.
 - County's construction activities were within ~10 feet of the monitoring station. Activities included the use of bulldozers and offroad dump trucks.
 - Real-time monitoring allowed the <u>County's contactor to be notified and to</u> <u>adjust operations. No damage reported</u>.

Conclusions

• Site conditions...

- > Narrower beaches force construction activities closer to upland structures
- Eroded dunes are more likely to result in exposed coastal structures
- Rock outcrops are areas where soil thickness is thinner

• Mitigation measures...

- Increase distances to upland structures and soil thickness over rock outcrops
- Adjust constuction means/methods (operations, equipment, access routes)
- Install vibration monitoring based site familiarity and past monitoring data

Vibration monitoring...

- Monitoring goals need to be defined (structures, activities)
- Siting of equipment can be influenced by background/ambient vibration
- > Availability of equipment may require relocation as construction progresses
- Real-time reporting can allow contractors to make adjustments

Vibrations & Excitations ...what The Beach Boys didn't tell you

Florida Shore & Beach Preservation Association February 3, 2023

Thanks...Questions?