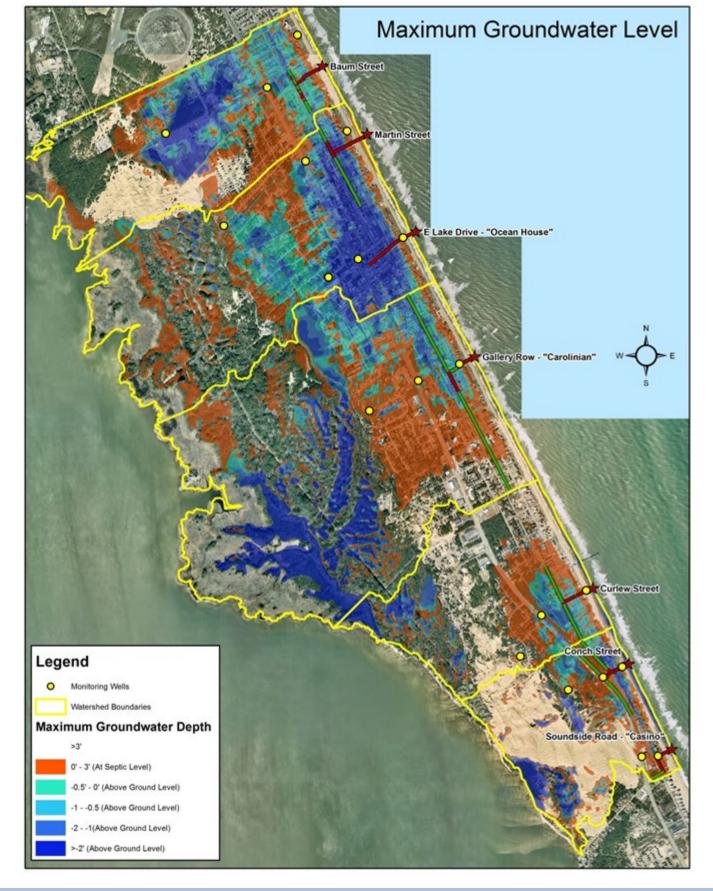
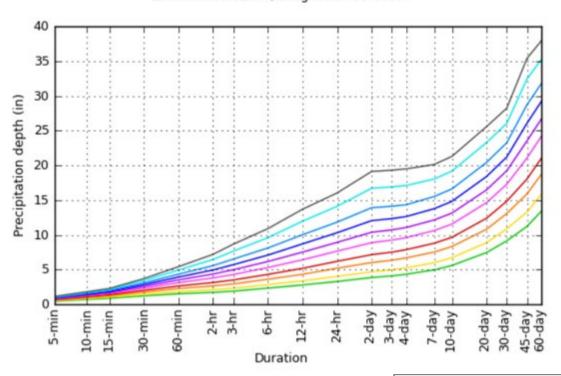

Innovative Stormwater Solutions in Coastal Areas

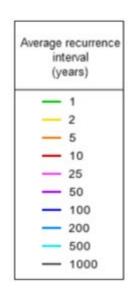
2023 FSBPA Tech Conference


February 2, 2023

Barrier Island Hydrology

Barrier Island Hydrology


Barrier Island Hydrology



PDS-based depth-duration-frequency (DDF) curves Latitude: 36.0167°, Longitude: -75.6667°

Rainfall Statistics Are Increasing in Many Places

PDS-based precipitation frequency estimates with 90% confidence intervals (in inches) ¹										
Duration				Avera	ge recurrence	interval (years)				
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.452 (0.414-0.497)	0.534 (0.487-0.583)	0.622 (0.569-0.679)	0.697 (0.636-0.760)	0.789 (0.715-0.856)	0.860 (0.775-0.934)	0.931 (0.838-1.01)	0.999 (0.894-1.08)	1.09 (0.966-1.18)	1.16 (1.03-1.27)
10-min	0.723 (0.661-0.794)	0.854 (0.779-0.933)	0.996 (0.912-1.09)	1.12 (1.02-1.22)	1.26 (1.14-1.36)	1.37 (1.24-1.49)	1.48 (1.33-1.61)	1.58 (1.42-1.72)	1.72 (1.53-1.87)	1.83 (1.62-1.99)
15-min	0.903 (0.826-0.992)	1.07 (0.980-1.17)	1.26 (1.15-1.38)	1.41 (1.29-1.54)	1.59 (1.44-1.73)	1.74 (1.56-1.88)	1.87 (1.68-2.03)	2.00 (1.79–2.17)	2.17 (1.92-2.36)	2.30 (2.03-2.50)
30-min	1.24 (1.13-1.36)	1.48 (1.35-1.62)	1.79 (1.64-1.96)	2.04 (1.86-2.23)	2.36 (2.14-2.56)	2.61 (2.35-2.84)	2.86 (2.58-3.11)	3.11 (2.78-3.37)	3.45 (3.06-3.75)	3.73 (3.28-4.05)
60-min	1.54 (1.41-1.70)	1.86 (1.70-2.03)	2.29 (2.10-2.51)	2.66 (2.43-2.90)	3.14 (2.85-3.41)	3.54 (3.19-3.84)	3.94 (3.55-4.28)	4.36 (3.90-4.73)	4.95 (4.39-5.38)	5.44 (4.79-5.92)
2-hr	1.75 (1.59–1.92)	2.12 (1.93-2.33)	2.67 (2.43-2.93)	3.17 (2.88-3.46)	3.82 (3.45-4.16)	4.38 (3.94-4.76)	4.96 (4.45-5.39)	5.59 (4.98-6.07)	6.47 (5.72–7.03)	7.21 (6.32-7.84)
3-hr	1.92 (1.75–2.11)	2.34 (2.13-2.56)	2.96 (2.70-3.24)	3.53 (3.21–3.85)	4.31 (3.89-4.70)	4.99 (4.49-5.42)	5.72 (5.12-6.21)	6.52 (5.79–7.07)	7.67 (6.73–8.31)	8.67 (7.54-9.37)
6-hr	2.36 (2.16-2.59)	2.85 (2.60-3.12)	3.63 (3.31-3.98)	4.33 (3.93-4.73)	5.32 (4.79-5.78)	6.18 (5.55-6.70)	7.10 (6.33-7.70)	8.13 (7.17-8.80)	9.61 (8.38-10.4)	10.9 (9.42-11.8)
12-hr	2.81 (2.55-3.12)	3.41 (3.08-3.78)	4.34 (3.93-4.81)	5.20 (4.70-5.75)	6.43 (5.78-7.07)	7.53 (6.72-8.24)	8.71 (7.70-9.53)	10.0 (8.77-11.0)	12.0 (10.3–13.1)	13.7 (11.6-15.0)
24-hr	3.31 (3.03-3.63)	4.04 (3.69-4.42)	5.22 (4.76-5.69)	6.21 (5.64-6.75)	7.67 (6.92-8.32)	8.93 (7.97-9.69)	10.3 (9.14–11.2)	11.8 (10.4–12.9)	14.1 (12.2-15.4)	16.0 (13.6–17.6)

Site Characteristics

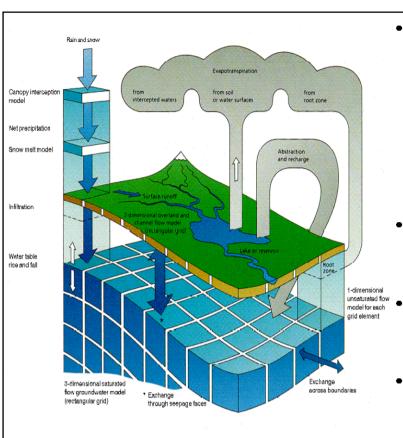
- Topography Dune And Trough System
- Land Use/Vegetation Residential & Commercial/ Vegetation Reduced
- Soils Clean Sands/Organic Pockets and Shallow Confining Layer
- Groundwater Levels High in Low-lying Areas
- <u>Tides</u> Can Impede Groundwater Transmission
- Rainfall Extratropical & Tropical Events
- Water Quality Fecal Coliform & Enterococcus

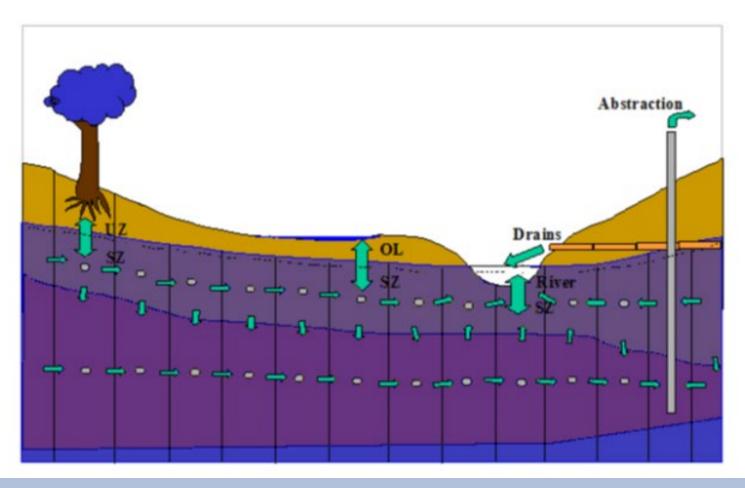
Data Collection Efforts

- Geotechnical Information
 - Hydraulic Conductivities (Saturated & Unsaturated)
- Water Quality Testing and Wetland Surveys
 - Fecal counts tied to sample location surface water samples high – groundwater samples low
 - Wetland surveys needed to estimate potential impacts of solutions

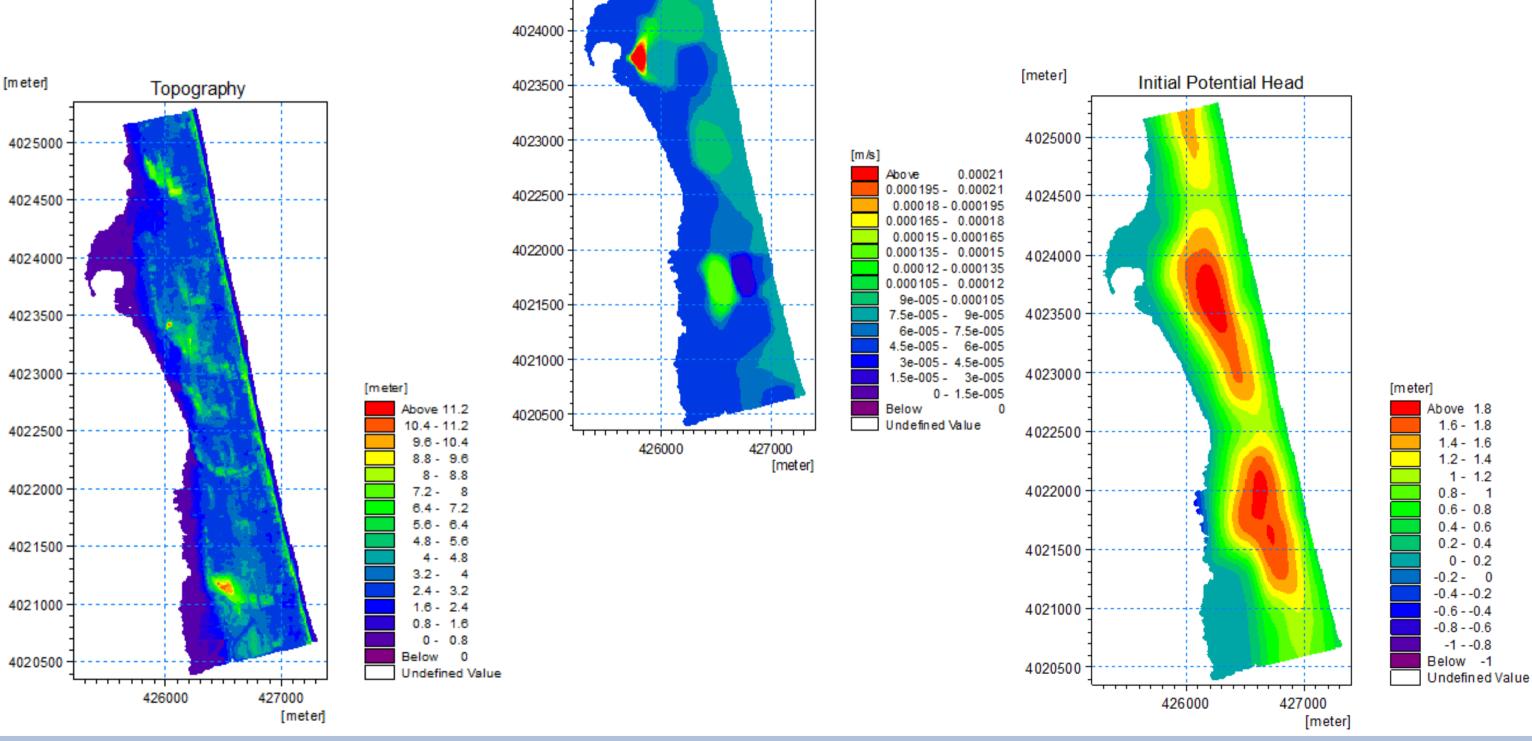
Summary of Fecal Coliform Test Results from Sample Sets 1 through 3

	Fecal Coliform (FC/100 mL)							
Sample	Set 1 (Atlantic Coast Lab)	Set 2 (Craven Co. Health Dept.)	Set 3 (Craven Co. Health Dept.)	Set 3 (CEETL Lab.)				
P-1	2,200	<1	<1	< 1				
P-2	4,000	1	2	< 1				
P-3	2,100	<1	<1	59				
P-4	5,400	<1	1	< 1				
P-5	410	<1	< 1	<1				
P-6	2,200	<1	< 1	NE				
P-7	2,400	<1	<1	< 1				
P-8	500	58	<1	52				
S-1	600	2,000	204	145				
S-2	46	17	6	20				
S-3	23	51	15	<1				
S-4	2,500	1,900	40	41				
S-5	182	360	113	91				
S-6	2,000	420	290	290				
S-7	490	5,700	590	270				
S-8	2,800	1,900	234	100				
Well 1		<1	<1	24				
Well 2		<1	< 2	< 1				
Well 3		< 10	16	210				
Well 4		<1	<1	< 1				
Well 5		<1	1 .	160				
Well 6		<1	<1	NE				
Well 7		<1	<1	< 1				
Well 8		<1	<1	NE				
Well 9		<1	<1 '	< 1				


[&]quot;P" samples collected from wells P-1 through P-8


[&]quot;S" samples collected from surface water near wells P-1 through P-8

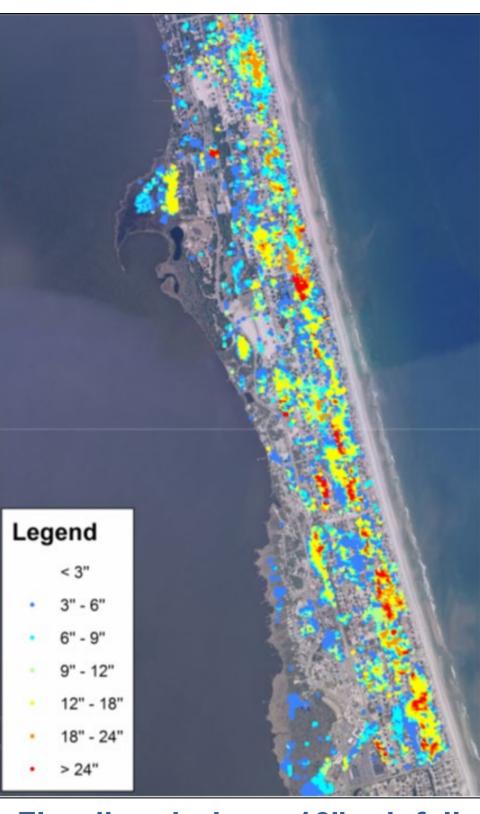
NE - Laboratory was unable to estimate fecal coliform


- ET Interception/Evapotranspiration
 - Interception of Rainfall by the Canopy
 - Drainage From the Canopy
 - Evaporation From the Canopy Surface
 - Evaporation From the Soil Surface
 - Uptake of Water by Plant Roots and Its Transpiration
- OC Overland and Channel Flow
 - Surface Runoff
 - Routing in Rivers
- **UZ Unsaturated Zone Flow**
 - Infiltration
 - Moisture Distribution
- SZ Saturated Zone Flow
 - 3D Groundwater Flow
 - Exchange With Boundaries

New Modeling Tools

New Modeling Tools

Horizontal Hydraulic Conductivity


4025000

4024500

Legend < 3" 18" - 24"

Flooding during an 8" rainfall event

Flooding during a 16" rainfall event

New Modeling

Tools

Treatment Options

- In-line Systems Provide Some Treatment
 - Levels are very high
 - Even with treatment, levels above standard
 - Problematic to meet goals
- Groundwater Collection and Pumping More Viable
 - Use in-situ sand to provide treatment
 - Manage groundwater tables to provide additional capacity and limit septic field inundation

- Monitoring Data for These Systems Is Promising
 - Pumped groundwater fecal levels are significantly lower than ponded surface samples
 - Agencies have allowed pumping to upland areas and ponds
 - Receiving area needed
 - Force main and pump infrastructure is expensive
 - Generators and SCADA controls also add cost

Monitoring Data for These Systems Is Promising

Water Quality Sampling Results - Discharge

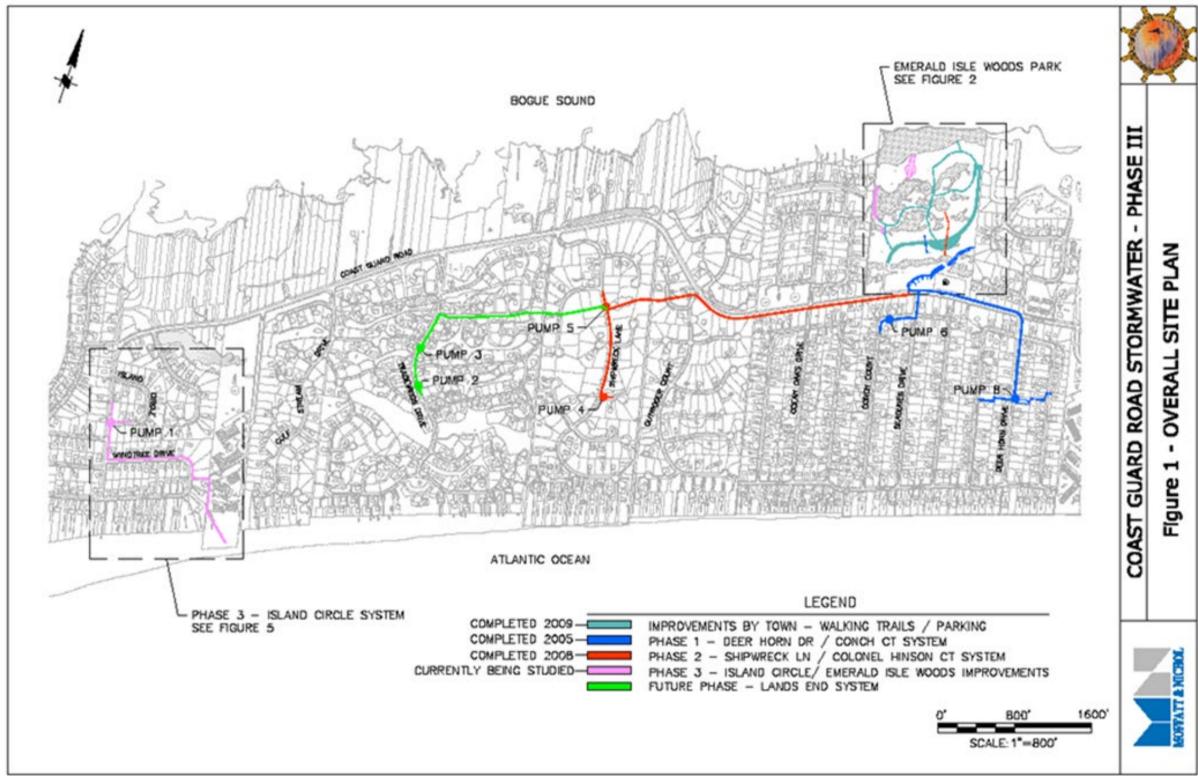
		COLIF, FEC col/100ml	TKN (ppm)	NO3+NO2-N (ppm)	TN (ppm)	TP (ppm)	CU/T/ICP (ppm)	ZN/T/ICP (ppm)
Date	Time		(1.1. /	,	(1.1.7)	(,	,	(1 1)
2/14/07	12:30 PM	<1	1.390	<0.1	1.390	0.851	<0.002	0.013
2/28/07	12:30 PM	<1	1.960	0.405	2.360	2.040	0.005	0.030
5/16/07	1:45 PM	161	1.300	<0.1	1.300	0.554	0.007	<0.005
7/24/07	12:00 PM	31	0.568	1.170	1.710	0.484	1.380	0.021
11/30/07	2:25 PM	<1	1.900	<.1	1.900	1.950	<.002	0.577
1/29/08	12:00 PM	<1	1.160	<.1	1.160	1.070	0.036	0.055
3/31/08	12:10 PM	2	0.762	<.1	W	0.822	0.103	0.058
5/30/08	11:00 AM	<1	0.948	<.1	0.948	1.280	0.085	0.054
7/31/08	1:00 PM	<1	<.1	<.1	<.1	0.272	0.274	0.080
9/30/08	1:00 PM	No Flow						
2/28/09	8:30 AM	<1	0.621	<.1	0.621	0.744	<.005	0.006

		COLIF, FEC col/100ml	TKN (ppm)	NO3+NO2-N (ppm)	TN (ppm)	TP (ppm)	CU/T/ICP (ppm)	ZN/T/ICP (ppm)
Date	Time	00# 100###	(66)	(PP)	(PP)	(PP)	(66)	(PP)
2/14/07	12:30 PM	<1	1.350	<.1	1.350			0.041
2/28/07	12:30 PM	<1	1.350	0.345	2.940	3.170	unreadable	0.017
5/16/07	1:45 PM	<1	1.530	<0.1	1.530	2.270	<.005	<.005
7/24/07	12:00 PM	<1	8.580	1.100	1.960	1.610	0.086	0.038
9/24/07	11:30 AM	<1	6.920	<.1	6.920	2.180	<.003	0.006
11/30/07	2:25 PM	<1	0.745	<.1	0.745	2.520	0.007	0.480
1/29/08	12:00 PM	<1	1.050	<.1	1.050	1.790	0.004	0.021
3/31/08	12:10 PM	<1	0.305	<1	W	0.772	<.003	<.006
5/30/08	11:00 AM	Well Removed						

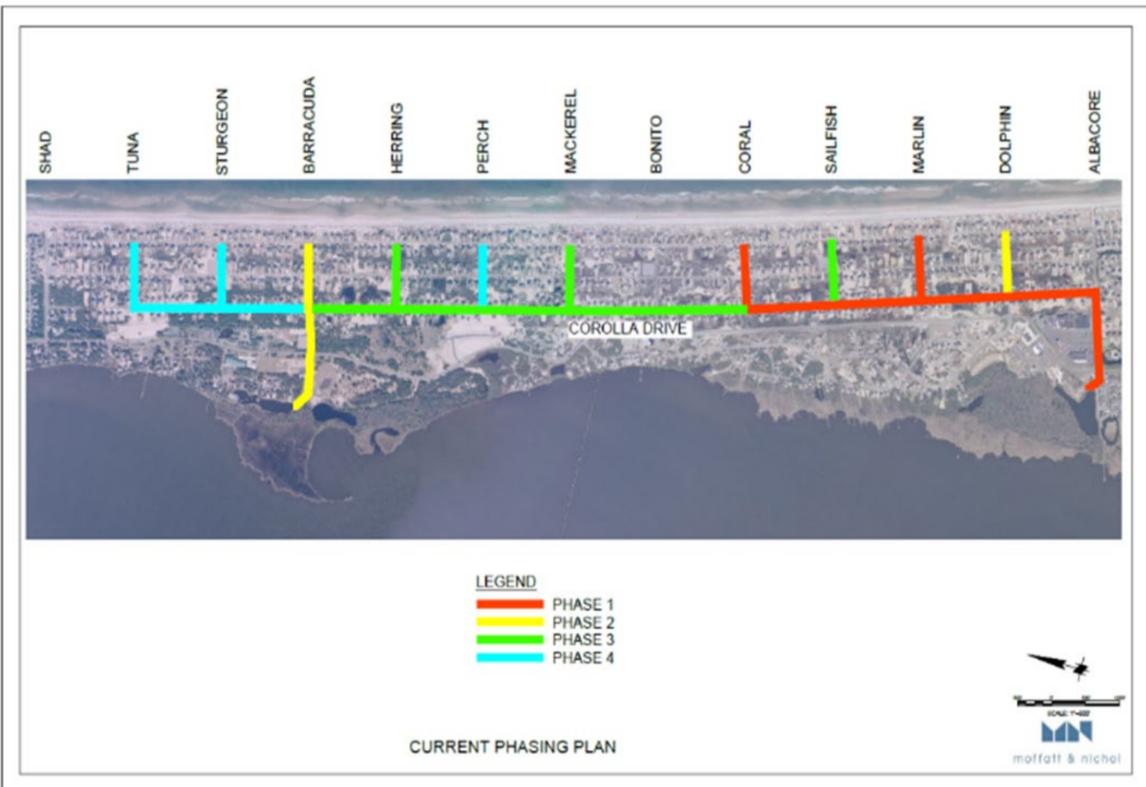
Water Quality Sampling Results - Well 4

Date	Time	COLIF, FEC col/100ml	TKN (ppm)	NO3+NO2-N (ppm)	TN (ppm)	TP (ppm)	CU/T/ICP (ppm)	ZN/T/ICP (ppm)
2/14/07	12:30 PM	<1	1.350	<0.1	1.350	1.990	<0.002	0.041
2/28/07	12:30 PM	<1	1.350	0.345	2.940	3.170	<0.005	0.017
5/16/07	1:45 PM	<1	1.530	<0.1	1.530	2.270	<0.005	<0.005

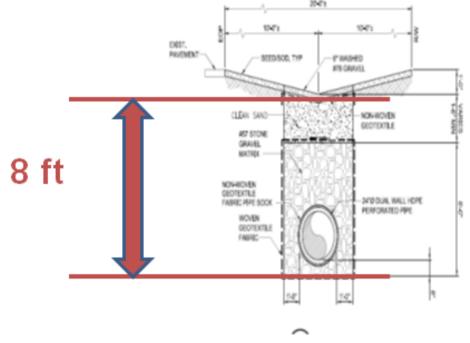
Water Quality Sampling Results - Well 7

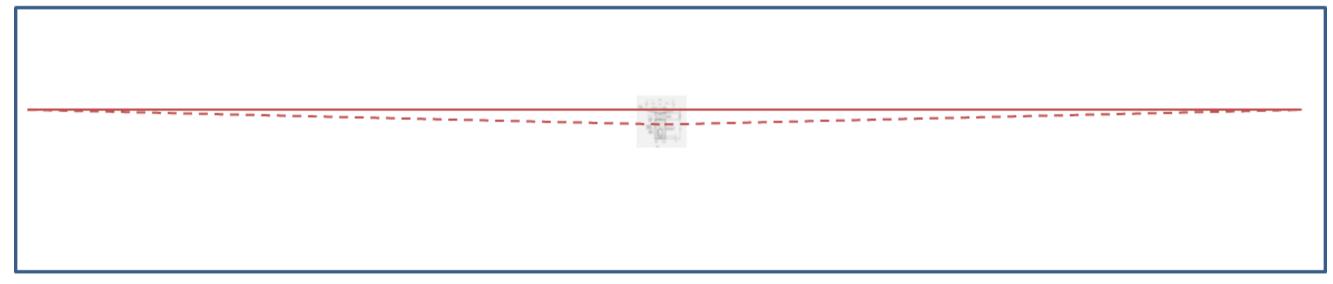

		COLIF, FEC col/100ml	TKN (ppm)	NO3+NO2-N (ppm)	TN (ppm)	TP (ppm)	CU/T/ICP (ppm)	ZN/T/ICP (ppm)
Date	Time							
2/14/07	12:30 PM	20	1.200	<0.1	1.200	0.960	0.242	0.122
2/28/07	12:30 PM	3	1.620	0.210	1.830	0.964	0.552	0.430
5/16/07	1:45 PM	<1	1.420	<0.1	1.420	0.583	0.525	0.213
7/24/07	12:00 PM	25	0.777	1.170	1.950	0.570	0.758	0.036
9/24/07	11:30 AM	dry well						
11/30/07	2:25 PM	83	0.432	<.1	0.432	2.010	0.025	1.110
1/29/08	12:00 PM	dry well						
3/31/08	12:10 PM	dry well						
5/30/08	11:00 AM	Well Damaged						
			-					

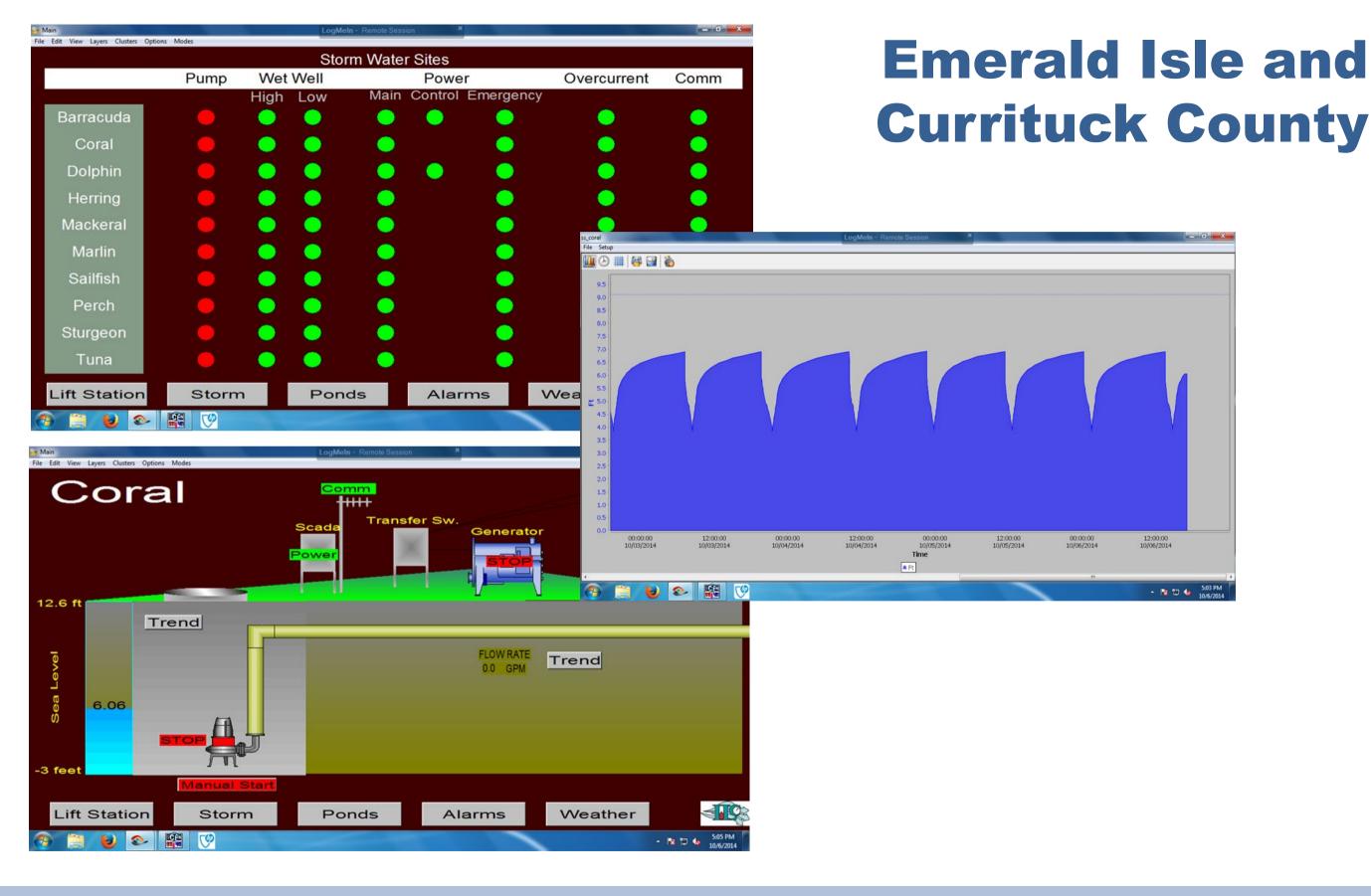
Emerald Isle and Currituck County

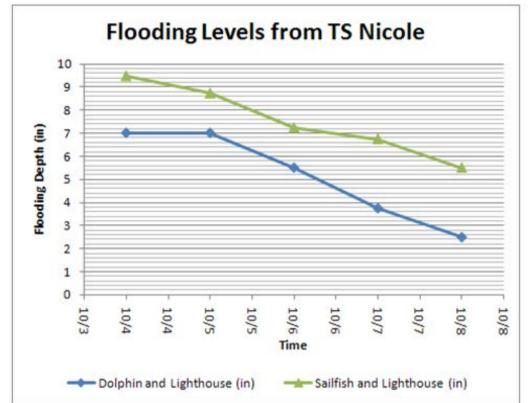

Water Quality Sampling Results - Well 9

		COLIF, FEC (col/100ml)
Date	Time	
2/14/07	12:30 PM	<1
2/28/07	12:30 PM	<1
5/16/07	1:45 PM	<1
7/24/07	12:00 PM	<1
9/24/07	11:30 AM	<1
11/30/07	2:25 PM	<1
1/29/08	12:00 PM	<1
3/31/08	12:10 PM	<1
5/30/08	11:00 AM	<1
7/31/08	1:00 PM	<1
9/30/08	1:00 PM	<1
2/28/09	8:30 AM	Well Dry









FEMA Stormwater Hazard Mitigation Plan Client: The Town of Emerald Isle, North Carolina

"The town has enjoyed a productive working relationship with M&N. M&N's staff have been very responsive to the Town's concerns, have shown a willingness to explore all options, and have been successful in presenting highly technical information in a manner in which elected officials, Town staff and the public can understand. M&N staff have been extremely well-prepared for formal meetings with regulatory agencies, and appear to have a cooperative and productive relationship with the regulatory agencies."

Frank A. Rush, Jr., Town Manager, Town of Emerald Isle

"After receiving approximately 8-10 inches of rain from Hurricane Ophelia, and another 10-12 inches of rain from the remnants of Tropical Storm Tammy a few weeks later, the Town was faced with numerous storm water problems, particularly in the Coast Guard Road area of Town. The Town's new storm water system for the Fawn Drive, Deer Horn Drive, and Conch Court areas worked very well and eliminated storm water problems at these locations in a matter of hours. Water from these locations was pumped to the Emerald Isle Woods Park site."

One of the drainage board members, who has worked for the U.S. Army Corps of Engineers for nearly 30 years quoted, "I've never been involved with a project in all my career that has been as satisfying as this one. I have never seen a municipal agency, A/E firm, and the public work more hand-in-hand to deliver such a great project."

The system has now performed well during a number of nor'-easters and small hurricanes. The system has also been outfitted with telemetry that allows remote control and monitoring of the system and groundwater levels so that the County can operate the system proactively and draw down groundwater levels if a significant storm is approaching.

Eric Weatherly – Currituck County Engineer

Project Costs & Financing

- Emerald Isle System Cost = \$2.3 M for 1,000 Acre Watershed
 - Project financed with loans paid for by ad-valorem taxes

<u>Currituck County</u> – System Cost = \$8.3 M for 850 Acre
Watershed (Aesthetics, Basins, Driveway Relocations, SCADA,
Generators) – Project financed with loans paid for by special tax
district set up for Whalehead subdivision

