Shoreline Change in Response to Sea Level Rise on Florida's Panhandle Coast

Jim Houston james.r.houston @usace.army.mil

Approach

- Calculate historical shoreline change by county (1867-2015)
- Determine causes of the change
- Project future shoreline change with increased rates of sea level rise

 Analyze whether beach nourishment can counter future sea level rise

To Project Shoreline Change

- Must consider all phenomena significantly affecting the change – typically not done
- Sea level rise is ignored in
 - Most sediment budget studies
 - Florida DEP (2015) "Strategic Beach Management Plans"!
- Equally invalid, EPA ignored everything except sea level rise in a report to Congress on shoreline change

Dean and Houston, 2016. Determining Shoreline Response to sea level rise, Coastal Engineering, 114, 1-8

Considers all phenomena significantly affecting shorelines

(Dean and Houston, 2016)

Measured Historical Shoreline Change

- 25

- Shoreline position measured at 1080 monuments from about 1867
- Determined shoreline change rates at the monuments using the least squares regression method

Escambia and Santa Rosa Counties are recorded jointly in the historical shoreline change data base

Coast Years East 1869 - 2007 Southwest 1872 - 2007 Panhandle 1867 - 2015

Shoreline Change (ft) + 158 (Houston & Dean, 2014) + 120 (Houston, 2015)

Measured Historical Shoreline Recession Since About 1867

References:

- Church and White (2016), NOAA (2016), Systeme d'Observation du Niveau des Eaux Littorales (2016)

Area Recession from Sea Level Rise

L = Shoreline length $h_* = Closure depth$ $W_* = Distance$ $\Delta S = Sea level rise$ B = Berm elevationB to h_*

Area Change from Passes in the Past

0.0

-0.5

Losses due to:

- Offshore disposal of dredged sediment

- Shoal growth from passes modified for navigation

References:

Area of Shoreline Loss, Millions m² -1.0 St Andrews -1.5 **Bay Entrance** ΔV_{sink} -2.0 $\overline{(h_* + B)}$ -2.5 Pensacola -3.0 Pass -3.5 -4.0 Escambia/ Okaloosa Walton Bay Gulf Franklin Santa Rosa

- Browder and Dean (1999), Hine et al (1986), Dean and O'Brien (1987), Corps of Engineers (2015)

Area Change from Beach Nourishment 1985 - 2015

Primary Reference:

- Florida Department of Environmental Protection (2015)

Area Change from Longshore Transport

References:

- Stone and Stapor (1996), Corps of Engineers (2010)

Longshore Transport

Area Change from Onshore Transport

Shoreline accretion at Cape San Blas, St Vincent Island, and Sand Island

Onshore Transport

Compare Sum of Contributions to Measured Shoreline Area Change

Measured Versus Sum of Factors

Past Shoreline Area Change (1867-2015)

Past Shoreline Area Change Rate

Shoreline Change Projections

- Sea level rise
 - Projections by the Intergovernmental Panel on Climate Change (IPCC, 2013)
 - IPCC has four climate scenarios RCP 2.6, 4.5, 6.0, 8.5
 - Projections from 2016-2065 and 2016-2100

- Initially assume rate = past rate from 1985-2015

Shoreline Projections

- Passes
 - Present
 - * Beach quality sand is no longer disposed beyond the littoral zone
 - * Dombrowski and Mehta (1996) showed that shoals of modified inlets stabilize after 30 years

- Future

* Assume shoals rise with sea level to maintain equilibrium with pass hydrodynamics

Shoreline Projections

 Assume longshore transport at past rates (Shimura et al, 2011)

 Assume onshore transport at past rates because of massive and continuously fed offshore shoals

Escambia/Santa Rosa County Beach Nourishment at Rate 1985 - 2015

Walton County Beach Nourishment at Rate 1985 - 2015

Beach Nourishment Above or Below 1985-2015 Rate for Stability (0.0 m/yr)

With and Without Beach Nourishment

Conclusions – Florida Panhandle

- Shoreline projections must consider all significant phenomena
- Without beach nourishment, Panhandle beaches will erode significantly and face disaster
- At past rates, the shoreline will be stable on average until 2065, but for the worse case scenario a 20% increase in nourishment would be required to 2100

Conclusion – For All of Florida

- Beach nourishment at past rates can offset sea level rise
- Florida Southwest Coast Dean and Houston, 2016. Determining shoreline response to sea level rise, *Coastal Engineering*, 114, p. 1-8

Florida East Coast

Houston, 2016. Beach nourishment as an adaptation strategy for sea level rise: A Florida east coast perspective. *Shore and Beach*, 84 (10), p. 3-12

Florida Panhandle Coast

Houston, 2016. Shoreline Change on the Florida West Coast with Projected Sea Level Rise, *Journal of Coastal Research* (submitted)

Caveat - Nourishment Must Continue at Past Rates

The End